Global Challenges in Smart Logistics
- innovation driving supply chain control

Coordination of Last-Mile Delivery in Urban Cities – a review of current practices and future prospects

Hoong Chuin LAU
Singapore Management University
SMU Urban Management Analytics Lab

THEME: Understanding, optimizing, and coordinating flows & interactions in urban settings

URBAN LOGISTICS
Improving Freight Flow
* e.g. last-mile multi-party delivery coordination in a mega city

URBAN MOBILITY
Improving Passenger Flow
* e.g. last-mile passenger share-riding at bus/MRT stations

URBAN TOURISM
Improving Visitor Flow
* e.g. crowd coordination/control at theme parks, trade events, expos, etc

URBAN HEALTHCARE
Improving Patient Flow
* e.g. dynamic queue control at hospital emergency departments

URBAN SAFETY & SECURITY
Enforcement and Surveillance
* e.g. deployment of patrols and inspectors at crowded places
Urban Tourism: Dynamic Logistics Management in Theme Parks via Coordination and Incentives
(Project with Resorts World Sentosa)*

*This work is supported by the National Research Foundation of Singapore, in collaboration with Carnegie Mellon University under LARC.
From Coordinating Crowds to Coordinating Freight

Collaborating Companies:
DHL Supply Chain (Singapore), Deutsche Post DHL
Yamato Transport
Urban Logistics

- **Key Factors**: Economic, Environment, Congestion, Energy
- Urban freight makes 10% of the traffic, but 40% of the pollution and noise, about 25% (road x hours) road usage space
- **The last mile**: transit of urban freight from the distribution center(s) to the city center (malls, offices and homes)
- Last mile amounts to between 13% to 75% of total logistics costs in Singapore

Government
1. Mobility
2. Environmental pollution
3. Safety and livability
4. Tourism

Businesses
1. Sustainability (CSR)
2. Service level improvement
Urban Logistics Stakeholders

Getting stakeholders (authorities, customers, providers) to collaborate to improve urban logistics operations

Urban Logistics ...

- ... aims to
 - **reduce costs** of goods distribution in urban areas
 - **increase** flexibility, speed and service level and supporting adding additional value creation
 - **improve** city's social & environmental situation
 through the use of business & decision analytics
- ...addresses city's & industry's needs
- ...leverages city and government authorities as major supporters
- ...promotes **innovative and best-practice solutions** across the industry

Stakeholders

Authorities

.....as enablers
- Implement policies to reduce city challenges, e.g. pollution, congestion
- Support urban logistics through regulations or incentives, e.g., city toll, delivery restrictions, etc.

Business owners

.....as customers
- Implement products to reduce cost, increase flexibility, speed and service level
- Implement solutions that increase the value add for the customer

Service Providers

.....as partners
- Implement optimized and collaborative services
- Innovative solutions that further increase productivity
Singapore Shopping District
Collaborative Urban Logistics
(National Project funded by A*STAR)

• Logistics - fragmented and relatively unregulated industry in Singapore

• Goal: getting stakeholders (shippers, carriers, service providers and receivers) to collaborate on last-mile delivery through an e-marketplace

• Key Challenges:
 • Address the implicit and explicit complexity of last mile logistics
 • Model the behavior of shippers, carriers and receivers
 • Coordinate multiple parties (agents) for system efficiency and cost effectiveness
 • Harmonize data for real-time decision support
 • Integrate and synchronize through an e-marketplace system
E-Market for Last Mile Delivery Coordination

- Higher Truck Load Factor
- Lower Transportation Cost
- More Environment Friendly
- Less Congestion
- Improved Reliability

Carriers
(Logistics Service Providers and Transportation companies)

Customers in City

Shippers
(Sources of shipment)

E-Market
(Cloud-based Platform)

Common Route Schedule
(Available Capacity vs ETA)

ETAs – Estimated Time To Arrival
LSP – Logistics Service Provider
TLF – Truck Load Factor
S – Supplier

ETAs

ETA 1

ETA 2

ETA 3

Timings of Delivery

Bidding & Negotiation

Pull Capacity

LSP A

LSP B

LSP C

S1

S2

S3

City Hall Demand Point

Bugis Demand Point

Store A

Store B

Store C

Carrier A

Carrier B

Carrier C

TLF: 0.9
TLF: 0.9
TLF: 0.9

TLF: 0.9
TLF: 0.9
TLF: 0.9

TLF: 0.65
TLF: 0.3

TLF: 0.95
TLF: 0.75

TLF: 0.9

Higher Truck Load Factor - Lower Transportation Cost - More Environment Friendly - Less Congestion - Improved Reliability
Freightbook Singapore (www.freightbook.com.sg)

- Launched online portal on 14th June 2013 with focus in Singapore only
- Online portal that connects business owners, freight forwarders and carriers and offers different accounts for each category of users
- Business owners can post their loads and indicate the origin and destination
- Freight forwarders can obtain sales leads, freight tariffs and sailing schedules
- **RFQ model**: Freight forwarders will respond with relevant quotes and business owners will decide on the appropriate quote that meets their requirement
Urban Consolidation Centre

• A facility in which freight flows from outside the city are consolidated with the objective to bundle inner-city transportation activities so as to reduce volume of distribution activities in the city

• Primary functions
 – consolidation of freight flowing into the city
 – transhipment/cross docking

• Types:
 – Single party: Cross-docking
 – Multi-party: Beyond cross-docking - Coordination of shippers, logistics service providers, carriers, and customers
UCC: Shipment and Information Flows

Shipments Flow & Direction

Information Flow & Direction

Suppliers / Shippers

Carriers / Providers

UCC

Receivers / Retailers

National Government

Local Authority / Landlord
UCC : Regulations

• Vehicle-based restrictions, e.g. types, sizes, weights, etc.
• Zone-based restrictions, e.g. zones for certain vehicles, zones for night delivery, dedicated zones for (un)loading, etc.
• Time-based restrictions, e.g. time windows for transit, delivery, (un)loading periods at destination, etc.
• Access charges based on specific times or environmental circumstances, e.g. toll fees, parking fees, etc.
UCC : Examples

• Carrier-Led UCC
 • Tenjin Joint Distribution System (Japan)
 • Tokyo Station (Japan)
 • La Petite Reine (Paris)

• Receiver-Led UCC
 • Binnenstadservice.nl (Netherlands)
 • Heathrow Airport (UK)
 • Westeld Stratford City Shopping Mall (UK)
UCC Coordination Mechanisms

• UCC serves as exchange, allowing shippers to buy and carriers to sell capacity
 – Carriers post capacity, and shippers bid
 – Shippers post loads (demand) and carriers bid

• UCC owns fleet
 – Sends RFQs to interested shippers in batch (dynamic pricing)

• Enable multiple parties to bid and negotiate on delivery jobs: synchronize timings of deliveries, consolidate loads while respecting their individual constraints and requirements of city authorities
Peer-to-Peer Collaboration Mechanisms

• Shipper-Shipper
 – consolidate multiple small loads across shippers
 – goal: better pricing from carriers

• Carrier-Carrier
 – consolidate LTL shipments
 – goal: at reducing empty truck movements