GHG EMISSION FACTORS AND CONVERSION EFFICIENCIES FOR MAKING **RFNBO GHG** EMISSION CALCULATIONS

RFNBO GREENHOUSE GAS EMISSIONS

GHG EMISSION FACTORS AND CONVERSION EFFICIENCIES FOR MAKING RFNBO GHG EMISSION CALCULATIONS

AN EXPERTISE FOR RIJKSDIENST VOOR ONDERNEMEND (RVO) NEDERLAND

Werner Weindorf Yanni Sandro Astono

Report 3 November 2022

ludwig bölkow systemtechnik

www.lbst.de

REPORT

Disclaimer

The staff of Ludwig-Bölkow-Systemtechnik GmbH prepared this report.

The views and conclusions expressed in this document are those of the staff of Ludwig-Bölkow-Systemtechnik GmbH. Neither Ludwig-Bölkow-Systemtechnik GmbH, nor any of their employees, contractors, or subcontractors, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product, or process enclosed.

CONTENTS

TABLE	s							
Acro	NYMS /	and Abbr	EVIATIONS	v				
1	INTRODUCTION							
2	Objec	DBJECTIVE						
3	List c	of input/o	UTPUT DATA AND EFFICIENCIES 8	8				
	3.1	H₂ produ	ction via water electrolysis	8				
	3.2	LH ₂ lique	efaction10	0				
	3.3	NH_3 and	methanol synthesis10	0				
	3.4	NH ₃ crac	ker14	4				
	3.5	Transpo	rt efficiencies14	4				
		3.5.1	Marine LH ₂ transport14	4				
		3.5.2	Marine NH ₃ and methanol transport10	6				
	3.5.3 Long-distance H ₂ pipeline							
		3.5.4 H_2 distribution via pipeline						
		3.5.5 H_2 distribution via tube trailer						
		3.5.6 H ₂ transport & distribution via LH ₂ trailer						
		3.5.7 NH₃ transport via inland navigation3.5.8 NH₃ transport via pipeline						
		3.5.9	NH₃ transport via train28	8				
		3.5.10	NH ₃ distribution via truck28	8				
		3.5.11	Methanol transport via train and truck29	9				
	3.6	Hydroge	n storage in salt caverns3	1				
	3.7	H₂ refue	lling stations	1				
		3.7.1	Refuelling station for H_2 delivery via pipeline	1				
		3.7.2	Refuelling stations for H ₂ delivery via tube trailer	2				
	3.7.3 Refuelling station for H_2 delivery via LH_2 trailer							
	3.8	Energy requirement for H ₂ compression35						

4	LITER	ATURE	41
	3.10	Fuel properties	.39
	3.9	GHG emission factors	.38

TABLES

Table 1:	Input and output data for alkaline electrolysers from selected	
	manufacturers	8
Table 2:	Input and output data for PEM electrolysers from selected	
	manufacturers	9
Table 3:	H ₂ emissions from H ₂ production via water electrolysis	10
Table 4:	Electricity consumption and H ₂ loss from H ₂ liquefaction	10
Table 5:	NH₃ and methanol synthesis	11
Table 6:	Direct air capture of CO ₂ (DAC)	14
Table 7:	NH₃ cracking plant	14
Table 8:	Maritime LH ₂ transport via LH ₂ carrier	15
Table 9:	Import terminal	16
Table 10:	Marine NH₃ transport (5000 km as example)	17
Table 11:	Marine methanol transport (5000 km as example)	18
Table 12:	Initial H ₂ compression for injection into long-distance pipeline	18
Table 13:	Long-distance H ₂ pipeline (1000 km as example)	20
Table 14:	Regional trunk H ₂ pipeline (400 km as example)	21
Table 15:	H ₂ losses in H ₂ pipeline grids	22
Table 16:	Compressor for tube trailer refuelling	23
Table 17:	H ₂ transport via tube trailer/bundles of pressure vessels (150 km	
	as example)	24
Table 18:	H ₂ transport via LH ₂ trailer (400 km as example)	25
Table 19:	NH₃ transport via inland ship 'NH₃ carrier LRG GAS 87' (500 km	
	as example	27
Table 20:	NH₃ transport via pipeline	27
Table 21:	NH₃ transport via train (400 km as example)	28
Table 22:	NH ₃ distribution via truck (150 km as example)	29
Table 23:	Methanol transport via train (400 km as example)	30
Table 24:	Methanol transport via truck (400 km as example)	30
Table 25:	H ₂ refuelling station for H ₂ delivery via pipeline	31
Table 26:	H ₂ refuelling stations for H ₂ delivery via tube trailer	34
Table 27:	Refuelling station for H ₂ delivery via LH ₂ trailer	35
Table 28:	Electricity requirement for H ₂ compression for selected input and	
	output pressures	37
Table 29:	Comparison of calculated electricity requirement for H ₂	
	compression with actual measured data	38
Table 30:	Global warming potentials (GWP) of various greenhouse gases	
	[IPCC 2007], [IPCC 2013], [IPCC 2021]	38

Table 31:	Greenhouse gas emission factors for the provision of utilities	39
Table 32:	Fuel properties	. 39

ACRONYMS AND ABBREVIATIONS

ASU	Air separation plant
CGH ₂	Compressed gaseous hydrogen
CH₃OH	Methanol
CH_4	Methane
CO ₂	Carbon dioxide
DA	Delegated Act
DAC	Direct air capture
GHG	Greenhouse Gas
GWP	Global warming potential
H_2	Hydrogen
HFO	Heavy fuel oil
LBST	Ludwig-Bölkow-Systemtechnik
LCA	Life cycle analysis
LH_2	Liquefied hydrogen
LHV	Lower heating value
LN_2	Liquefied nitrogen
LSFO	Low sulphur fuel oil
N_2	Nitrogen
NH₃	Ammonia
N_2O	Nitrous oxide
ORC	Organic Rankine cycle
PEM	Proton exchange membrane
PSA	Pressure swing adsorption
RED	Renewable Energy Directive
RFNBO	Renewable Fuel of Non-Biological Origin
yr	Year

1 INTRODUCTION

Both the European Commission as well as EU Member States have ambitious goals for the production and use of green hydrogen, which is hydrogen produced through electrolysis using renewable electricity.

As part of the current revision of the recast of the Renewable Energy Directive (RED-II), the European Council and Parliament discuss binding RFNBO targets for transport and for the industry. RFNBO is the abbreviation for 'Renewable Fuels of Non-Biological Origin', which is renewable hydrogen or other energy carriers (such as ammonia or methanol) produced from renewable hydrogen.

On May 20th, the European Commission published two relevant delegated acts. One (the Delegated Act to RED-II article 27.3 or 'DA 27.3') sets rules on when electricity input into an electrolyser can be considered to be 'additional', the second (the 'DA 28.5') proposes a methodology for the calculation of GHG emissions from RFNBO's. Both delegated acts are still drafts, a four-week consultation period recently ended. The final versions of the DA's should be published late 2022.

For companies that want to produce and/or import RFNBO's, not only these two delegated acts are important, but also other RED-II requirements on RFNBO's which are 'mass balance' (art. 30.1) and '70% GHG reduction' (art. 25.2, to be moved to art. 29(a) when RED-II is to be revised). Companies seek for investor certainty and they therefore want to understand the implications of these requirements.

2 **OBJECTIVE**

The study aims to present input/output data and efficiencies of processes required for making GHG calculations on the following RFNBO production pathways:

1. H_2 production, H_2 compression, H_2 transport by pipeline or tube trailer, CGH₂ refueling station, H_2 use

2. H_2 production, H_2 liquefaction LH_2 transport by ship, evaporation at import terminal, transport via pipeline, CGH₂ refueling station, H_2 use

2b. H_2 production, H_2 liquefaction, LH_2 transport by ship, transport via LH_2 trailer, evaporation at CGH₂ refueling station, H_2 use

3a. H_2 and N_2 production, NH_3 synthesis, NH_3 transport by ship (sea), NH_3 transport by ship (river)/pipeline/truck, NH_3 use

3b. H_2 and N_2 production, NH_3 synthesis, NH_3 transport by ship (sea), NH_3 cracking, H_2 compression, H_2 transport by pipeline or tube trailer, H_2 use

4. H_2 production, methanol synthesis using CO_2 from direct air capture (DAC) as carbon source, methanol transport by ship (sea), methanol transport via train and truck.

In this report some example GHG calculations are made, using the emission data for some specific fuels as shown in chapter 3.9. Please note that – when making full life cycle assessment (LCA) calculations following the methodology as described in (a Delegated Act under) the recast Renewable Energy Directive – also emissions due to the provision of fuels shall be taken into account. These provisions are for instance the emissions due to crude oil winning, transport, and oil refining.

3 LIST OF INPUT/OUTPUT DATA AND EFFICIENCIES

3.1 H₂ production via water electrolysis

Table 1 shows the input and output data for alkaline electrolysers from selected manufacturers, Table 2 shows the input and output data for electrolysers where proton exchange membranes (PEM) are used as electrolyte.

Table 1:Input and output data for alkaline electrolysers from selected
manufacturers

	Unit	Cummins 2021a	Nel 2021	Sunfire 2022	Thyssenkrupp 2019	Average
Per MJ of H ₂						
Input						
Electricity	MJ/MJ_{H2}	1.726	1.534	1.567	1.667	1.623
Water	kg/MJ _{H2}	0.074	0.074	0.074	0.074	0.074
Output						
H ₂	MJ	1	1	1	1	1
02	kg/MJ _{H2}	0.066	0.066	0.066	0.066	0.066
Efficiency (LHV)		58.0%	65.2%	63.8%	60.0%	61.6%
Pressure H ₂	10⁵ Pa	10	2	31	1.3	
Per kg of H_2						
Input						
Electricity	MJ/kg	207	184	188	200	195
Water	kg/kg	8.94	8.94	8.94	8.94	8.94
Output						
H ₂	kg	1	1	1	1	1
02	kg/kg	7.94	7.94	7.94	7.94	7.94

	Unit	Cummins 2021b	Nel 2021l	Siemens 2022	ITM 2022	Average
Per MJ of H ₂						
Input						
Electricity	MJ/MJ _{H2}	1.530	1.667	1.5656	1.6672	1.608
Water	kg/MJ _{H2}	0.074	0.074	0.074	0.074	0.074
Output						
H ₂	MJ	1	1	1	1	1
02	kg/MJ _{H2}	0.066	0.066	0.066	0.066	0.066
Efficiency (LHV)		65.3%	60.0%	63.9%	60.0%	62.2%
Pressure H ₂	10⁵ Pa	30	31	1.1	31	
Per kg of H ₂						
Input						
Electricity	MJ/kg	184	200	188	200	193
Water	kg/kg	8.94	8.94	8.94	8.94	8.94
Output						
H ₂	kg	1	1	1	1	1
02	kg/kg	7.94	7.94	7.94	7.94	7.94

Table 2:Input and output data for PEM electrolysers from selected
manufacturers

There are some hydrogen losses during operation and maintenance of electrolysis plants. Hydrogen losses occur from leakages through casing and pipework, venting during start-up and shutdown (0.05 to 0.6%), venting of oxygen containing hydrogen from crossover (0.05 to 0.15%), and purging processes to remove impurities (3-10%). The hydrogen losses can be reduced by re-routing the vented and purged gases and oxidation to water by passing them over recombining catalysts [Frazer-Nash 2022] or sending the sending these gases to a flare.

There is a huge bandwidth for the hydrogen losses and emissions indicated in literature. [Arrigoni et al. 2022] indicates a hydrogen release into atmosphere of only about 0.2% of the generated hydrogen for today and 0.03% for 2030 citing a presentation from Air Liquide. [Frazer-Nash 2022] indicated far higher hydrogen release to atmosphere of up to 9.2% for today which can be decreased to 0.24 to 0.52% by applying best available technology.

Table 3 shows the hydrogen emissions from hydrogen production via water electrolysis with venting and purging to atmosphere and with full recombination of H_2 from purging and crossover venting.

		Frazer-N	Arrigoni et al. 2022				
		50% confidence level	50% confidence level 99% confidence level Today 2030				
With venting and purging to atmosphere:							
		3.32%	9.20%	0.20%			
	g/MJ _{H2, LHV}	0.286	0.845	0.0167			
With full recombination of H ₂ from purging and crossover venting:							
		0.24%	0.52%		0.030%		
Π_2 IOSS	g/MJ _{H2, LHV}	0.020	0.044		0.0025		

Table 3:H2 emissions from H2 production via water electrolysis

3.2 LH₂ liquefaction

Table 4 shows the electricity consumption and hydrogen losses for large-scale hydrogen liquefaction based on data from [IDEALHY 2013] for the operation at 100% and 50% of maximum capacity compared with an existing H_2 liquefaction plant with a capacity of 5 t LH₂ per day in Leuna in Germany described in [Haberstroh 2019]. The maximum capacity of the H_2 liquefaction plant in [IDEALHY 2013] amounts to about 50 t of LH₂ per day and unit.

	Unit	100% load	100% load	50% load
Capacity	t LH₂/d	5	50	50
	MWLH2, LHV	6.9	69	69
Electricity consumption	MJ/MJ _{LH2}	0.357	0.203	0.233
	MJ/kg _{LH2}	42.82	24.34	28.01
	kWh/kg _{LH2}	11.90	6.76	7.78
		Up to 9.5%*	1.625%	1.625%
	g/MJ _{H2, LHV}	0.875	0.138	0.138

Table 4:Electricity consumption and H2 loss from H2 liquefaction

*[Haberstroh 2019]: single digit percentage, [Arrigoni et al. 2022]: 10% including transfer operations to LH₂ trailer.

3.3 NH₃ and methanol synthesis

The NH₃ synthesis typically is carried out at 10 to 25 MPa and a temperature of 400 to 500°C according to the following reaction:

 $1.5 \text{ H}_2 + 0.5 \text{ N}_2 \rightarrow \text{NH}_3$

The reaction is exothermal. The excess steam is used for steam turbines used for compression. The NH_3 synthesis plant data shown in Table 5 includes the net electricity

requirement for H_2 and N_2 compression, and the electricity for the air separation plant (ASU) to provide pure N_2 .

Direct methanol synthesis using CO_2 and H_2 as feedstock is carried out at a pressure of about 8 MPa and a temperature of 240 to 270°C according to the following reaction:

 $CO_2 + 3 H_2 --> CH_3OH + H_2O$

The reaction is exothermal.

The methanol synthesis plant data shown in Table 5 includes H_2 and CO_2 compression from 3.0 MPa (H_2) or 0.1 MPa (CO_2) to 7.8 MPa, methanol synthesis, methanol purification, an organic Rankine cycle (ORC) plant for electricity generation, and steam generation from purge gases [Van-Dal and Bouallou 2013].

Parameter	Unit	NH₃ synthesis	Methanol synthesis	Comment
Capacity (NH ₃ or CH ₃ OH)	t/h	83.3	59.3	
Pressure H ₂ feed	10⁵ Pa	30	30	
Pressure CO ₂ feed	10⁵ Pa	-	1	
Pressure synthesis	10⁵ Pa	100-250	78	
Per MJ of NH₃				
Input				
H ₂	MJ/MJ _{NH3 or CH3OH}	1.149	1.228	178 kg/t _{NH3}
CO ₂	kg/MJ _{NH3 or CH3OH}	-	0.0745	88 t per 59.3 t of methanol
Electricity	MJ/MJ _{NH3 or CH3OH}	0.163*	0.0538	1.73 MWh/t _{NH3}
N_2 from air	kg/MJ _{NH3 or CH3OH}	0.0442	-	
Output				
NH ₃ , methanol	MJ	1	1	
Heat	MJ/MJ _{NH3 or CH3OH}	0	0.0863	No excess heat for NH ₃
Efficiency of conversion		87.0%	81.4%	
CO ₂ emissions	g/MJ _{NH3 or CH3OH}	0	5.53	From excess CO ₂
Per kg of NH ₃ or CH ₃ OH				
Input				
H ₂	MJ/kg _{NH3 or CH3OH}	21.35	24.48	
CO ₂	kg/kg NH3 or CH3OH	-	1.48	
Electricity	MJ/kg _{NH3 or CH3OH}	3.04*	1.074	For NH ₃ incl. ASU
N ₂ from air	kg/kg _{NH3 or CH3OH}	0.822	-	
Output				
NH ₃ , methanol	kg	1	1	
Heat	MJ/kg _{NH3 or CH3OH}	0	1.72	
Data source		DECHEMA 2017	[Van-Dal & Bouallou 2013]	

Table 5: NH₃ and methanol synthesis

*Adjusted to the higher efficiency of electric driven compressors compared to steam turbine driven compressors (see text below)

In literature a range of numbers can be found for electricity consumption for NH_3 and methanol synthesis, the numbers in Table 5 give an example from one literature source. Report [Ortiz Cebolla et al. 2022] gives in paragraphs 2.3.1 and 2.4.1 an indication of the magnitude of this range (1.2 to 2.7 GJ/t of NH_3 , an outlier giving a value of 5 GJ/t of NH_3 , and 0.63 to 5.4 GJ/t of methanol).

The electricity requirement strongly depends on the pressure of the feed gases and the pressure required for NH₃ synthesis. E. g. if a low-pressure electrolyser operated nearly ambient pressure is used the feed hydrogen pressure will be about 0.1 MPa leading to a higher electricity consumption than if a pressurised electrolyser is applied.

If high-pressure NH₃ synthesis (30 to 46 MPa) is applied the electricity requirement is higher than in case of a low-pressure absorbent-enhanced NH₃ synthesis (1 to 3 MPa). However, the technology readiness level (TRL) for the absorbent-enhanced NH₃ synthesis is low (4-5) [Rouwenhorst et al. 2019].

For the 2.7 GJ/t of NH₃ [Smith et al. 2020] has been cited in [Ortiz Cebolla et al. 2022] where an electrolysis plant operated at 1 MPa combined with high-pressure Haber-Bosch synthesis process operated at 15 MPa has been assumed. The separation of the NH3 has been carried out via condensation at -25 to -33°C and a pressure of about 14 MPa.

[Rouwenhorst et al. 2019] cited in [Ortiz Cebolla et al. 2022] indicates an electricity consumption for the synthesis loop of 0.112 to 1.712 kWh per kg of NH₃ or about 0.403 to 6.163 GJ per t of NH₃. The ASU consumes about 0.25 kWh per kg of NH₃ or about 0.9 GJ per t of NH₃ leading to 1.30 to 7.06 GJ of electricity per t of NH₃. The electricity consumption data refer to small-scale NH₃ synthesis plant using ruthenium-based catalysts instead of iron-based catalysts used in NH₃ synthesis plants today (reason: less poisoning through O_2 leading to lower H₂ purity requirement). Low-pressure (1 to 3 MPa) absorbent-enhanced NH₃ synthesis is applied.

[Liu et al. 2020] cited in [Ortiz Cebolla et al. 2022] indicate am electricity consumption for the NH_3 synthesis loop of 1.165 GJ per t of NH_3 and 0.480 MJ per t of NH_3 for N_2 production if cryogenic distillation for N_2 separation is assumed leading to about 1.65 MJ per t of NH_3 . The NH_3 synthesis is carried out at 20 MPa.

The 5 GJ/t of NH₃ indicated as 'outlier' in [Ortiz Cebolla et al. 2022] citing [DECHEMA 2017] refer to the electricity requirement for compressors (1.4 MWh/t of NH₃) for a hydrogen feed pressure of 3 MPa (the N₂ feed pressure may be lower). Additionally, 0.33 MWh of electricity per t of NH₃ are required for the air separation unit (ASU) leading to 1.73 MWh of electricity per t of NH₃ leading to the 6.23 GJ of electricity per t of NH₃ in Table 5 (the deviation from the sum of the values indicated in GJ are from rounding errors). [DECHEMA 2017] has derived the electricity consumption for the compressors from conventional steam turbine powered compressors without taking into account the higher efficiency of electric motor

driven compressors. If the efficiency of the steam turbines is assumed to be 33% and the efficiency of the electric motors to be 90% the electricity consumption for the compressors will be about 0.51 MWh per t of NH_3 (1.4*0.33/0.90 MWh per t of $NH_3 = 0.513$ MWh per t of NH_3). Then the overall electricity consumption for the NH_3 synthesis step will be about 3.04 GJ per t of NH_3 .

[DNV-GL 2016] cited in [Ortiz Cebolla et al. 2022] for the electricity consumption for the methanol synthesis loop refers to methanol from biomass. For methanol from biomass the electricity requirement is indicated with 2.1 MWh per t of methanol or 7.56 GJ pr t of methanol which also includes auxiliary electricity for the operation of the biomass gasification plant.

[Pérez-Fortes et al. 2016] cited in [Ortiz Cebolla et al. 2022] indicates a net electricity consumption (after subtraction of electricity supplied by the ORC turbine) of about 0.170 MWh per t of methanol or about 0.61 GJ per t of methanol. It has been assumed that the CO_2 is derived from flue gas from a coal fuelled power plant. [Pérez-Fortes & Tzimas2016] indicate a net electricity consumption of 0.177 MWh per t of methanol or about 0.64 GJ per t of methanol.

[Nieminen et al. 2019] cited in [Ortiz Cebolla et al. 2022] indicate an electricity consumption of 0.624 MWh per t of methanol or about 2.25 MJ per t of methanol for the gas-phase methanol synthesis process. For the liquid-phase methanol synthesis process the electricity requirement is close to that of the gas-phase process (0,625 to 0.683 MWh per t of methanol) but external heat input is required. The gas-phase methanol synthesis process does not need external heat because the reaction heat is sufficient to supply all process heating.

Swiss Liquid Future, a developer of power-to-methanol plants indicates an electricity consumption of 1 MWh per t of methanol (3.6 GJ per t of methanol) for a hydrogen feed gas pressure of 0.16 MPa. The capacity amounts to 0.5 t of methanol/h for the smaller plant and 10 t of methanol/h for the larger plant [Swiss Liquid Future 2020]. The pressure of the hydrogen feed in [Van-Dal & Bouallou 2013] is assumed to be 3 MPa leading to a net electricity consumption of 1.074 GJ per t of methanol. The capacity amounts to 59.3 t of methanol/h.

Table 5 does not include the supply of CO_2 for methanol synthesis. Table 6 shows the input and output data for the CO_2 supply for methanol synthesis via direct air capture (DAC) based on data from [Climeworks 2017] (electricity and heat demand), [Wurzbacher 2015], and [Wurzbacher 2017] (water extraction from air). The amount of water extracted from air depends on the water content of the air.

Parameter	Value	Comment
Input		
Electricity	1.35 MJ/kg _{co2}	0.30 to 045 kWh/kg _{co2}
Heat (100°C)	6.36 MJ/kg _{co2}	1.5 to 2.0 kWh/kg _{co2}
Output		
CO ₂	1 kg	
Water	>1 kg/kg _{co2}	Depending on the water content of the air

Table 6:	Direct air capture of CO ₂ (DAC)
----------	---

3.4 NH₃ cracker

 NH_3 cracking is at an early stage of development. For large-scale NH_3 cracking plants there are only concepts. Most commercially available NH_3 crackers have a capacity of 1 to 2 t H_2 /day. These commercial units produce forming gas (a mixture of H_2 and N_2) and rarely include downstream processes for H_2 purification.

The heat demand is met by combustion of hydrogen and unreacted NH₃. The large-scale NH₃ cracking plant (200 t H₂/day) described in [Jackson et al. 2019] includes hydrogen storage with a maximum pressure of 25 MPa. The unreacted NH₃ leaving the NH₃ cracker is removed from the product gas stream via a scrubbing process. The H₂/N₂ mixture is separated via cryogenic gas separation.

Table 7:NH₃ cracking plant

Parameter	Unit	Value	Reference/ comment	
NH input	NAT/NAT	1 251	NH₃ input: 2734 GWh/yr	
мп ₃ шри	IVIJ/IVIJ _{H2}	1.231	Output pure H ₂ : 2186 GWh/yr	
Electricity input	N#1/N#1	0.145	Electricity input: 316 GWh/yr	
Electricity input	IVIJ/IVIJ _{H2}	0.145	Output pure H ₂ : 2186 GWh/yr	
Efficiency of conversion	-	80.0%	LHV (H₂ stream)/(LHV (NH₃ stream)	

The hydrogen storage provides sufficient pressure for a downstream H_2 pipeline. As a result, no initial hydrogen compression is required. For trailer refuelling also less electricity is required.

3.5 Transport efficiencies

3.5.1 Marine LH₂ transport

The marine transport of hydrogen is carried out via LH_2 carriers which are similar as LNG carriers. Until now, only one very small (transport capacity 1250 m³ LH₂) prototype LH_2 carrier exists (Suiso Frontier built by Kawasaki) which is not representative for future LH_2

transport. Kawasaki's future LH_2 carrier will have a transport capacity of 140,000 m³ of LH_2 [Kamiya et al. 2014]. The vaporized LH_2 is used as fuel for ship propulsion. In future the fuel demand probably is fully met by H_2 .

Table 8 shows the transport efficiency for maritime LH_2 transport for different transport distances. The LH_2 tanks must not be filled to 100%. Furthermore, the LH_2 tanks must not be completely emptied to keep the LH_2 tanks cold.

Parameter	Unit	2500 km	5000 km	Reference
Transport capacity	m ³	160,000	160,000	Kamiya et al. 2014
Filling ratio		85%	85%	
Heel		5%	5%	
Net payload	t LH ₂	9160	9160	
Distance (one way)	km	2500	5000	
Speed	knots	16	16	Kamiya et al. 2014
	km/h	30	30	
Boil-off rate		0.20%/day	0.20%/day	Kamiya et al. 2014
		1.4%/roundtrip	2.8%/roundtrip	
Fuel consumption (one way)	kWh/(t _{LH2} km)	0.181	0.181	Hank et al. 2020
	kWh/km	1658	1658	
Fuel consumption	kWh/roundtrip	8,290,000	16,580,000	
Share boil-off		52%	52%	
Share supplemental fuel		48%	48%	
(additional LH ₂)		70 /0	-10 /0	
LH ₂ delivered	t	8912	8663	
LH ₂ input including H ₂ for ship propulsion	M]/M]	1.0279	1.0574	
Transport efficiency		97.3	94.6%	

Table 8:Maritime LH2 transport via LH2 carrier

Parameter	Unit	Value	Reference		
Ship unloading					
Capacity	m³/h	10,000	Kolff 2021 p. 85		
	t/h	709			
Pump power	kW	385	Kolff 2021 p. 85		
	MJ_{e}/MJ_{LH2}	0.0000163			
	MJ _e /kg _{LH2}	0.00195			
Evaporation (Re-gasification					
Electricity	kJ/kg _{H2} 224 Kolff 2021 р				
	MJ _e /MJ _{H2}	0.0018673			
	MJ _e /kg _{LH2}	0.224			
Pressure	10⁵ Pa	50	Kolff 2021 p. 140		
Import terminal total					
Electricity	MJ _e /MJ _{H2}	0.0018835			
	MJ _e /kg _{LH2}	0.2260			

Table 9:Import terminal

If the hydrogen should be transported as LH₂ the re-gasification step has to skipped.

3.5.2 Marine NH₃ and methanol transport

Marine transport of NH_3 generally is carried out with fully refrigerated LPG carriers. NH_3 carriers are similar as LPG carriers. Most LPG carries also can transport NH_3 . The largest NH_3 carriers have a transport capacity of about 50,000 t of NH_3 .

Table 10 shows the assumptions and results for the marine transport of NH_3 with fully refrigerated NH_3 carriers.

Parameter	Unit	Value	Reference/ comment
Deadweight, summer draught	t	56146	Sum of cargo, fuel, fresh water, ballast water. provisions, passengers, and crew
Capacities			
Cargo (4 x IMO Type A tanks)	m ³	84017	_
HFO	m ³	3728	
Marine diesel oil	m ³	436	ICE 2018
Lubrication oil	m³	140	
Fresh water	m ³	555	_
Crew	persons	31	_
Payload NH ₃	t	51475	Calculation from numbers above
Utilization		50%	Return voyage empty
Service speed	knots	16.5	ICE 2018
	km/h	30.6	
Cruising rango	nautical miles	21,000	ICE 2018
	km	38,892	
HEO concumption	kg/km	95.6	
	MJ/km	3781	
Marino diosol oil	kg/km	9.6	
	MJ/km	404	
Fuel consumption total	MJ/km	4185	
Distance	km	5000	Assumed as example
Eucl concumption total	MJ/(t _{NH3} km)	0.163	
including return vovago	MJ/kg _{NH3}	0.815	
including return voyage	MJ/MJ _{NH3}	0.0438	
Fuel type	-	LSFO	To calculate the CO_2 emissions
	g/(t _{NH3} km)	13.2	
CO ₂ emissions	g/kg _{NH3}	66.1	If LSFO is used as fuel
	g/kg _{NH3}	3.55	_

Table 10: Marine NH₃ transport (5000 km as example)

Marine transport of methanol is carried out via methanol carriers. One of the largest methanol carriers is the methanol carrier Millennium Explorer which has a cargo capacity of about 120,000 m³ of methanol (~95,000 t of methanol) [Wärtsilä 2015]. Although the Millennium Explorer has already been built in 1999 it is still one of the largest methanol carriers. Table 11 shows the assumptions and results for marine methanol transport.

Parameter	Unit	Value	Reference/ comment
Payload methanol	t	100,000	O'Connor 2002
Speed	knots	15	O'Connor 2002
speed	km/h	27.8	
Distance	km	5000	Assumed as example
	Btu/(t _{снзон} nautical mile)	104	O'Connor 2002
Fuel consumption incl.	MJ/(t _{снзон} km)	0.0592	
return voyage (empty)	MJ/kg _{снзон}	0.296	
	МЈ/МЈ _{СНЗОН}	0.0149	
Fuel type	-	LSFO	
CO ₂ emissions	g/(t _{снзон} km)	4.81	
	g/MJ _{снзон}	1.21	

Table 11:Marine methanol transport (5000 km as example)

3.5.3 Long-distance H₂ pipeline

Before injection of the hydrogen into a long-distance pipeline, compression from the pressure of the H_2 production plant to the pressure of the pipeline is required (initial H_2 compression). Electrically driven compressors are assumed for initial hydrogen compression. The pressure of the long-distance pipeline typically is about 8.5 MPa [NEA 2022]. The electricity consumption presented in Table 12 has been calculated based on the equation in chapter 3.8. Table 12 shows the assumptions and results for initial hydrogen compression.

Table 12:Initial H2 compression for injection into long-distance pipeline

Parameter	Unit	Value	Comment/ reference
Number of stages	-	2	
Adiabatic exponent	-	1.402	
T (in)	К	313	Temperature of H ₂ leaving the electrolyser
T (intercooling)	К	333	-
Suction pressure	10⁵ Pa	25	e. g. pressure of the electrolysis plant
Final pressure	10⁵ Pa	85	[NEA 2022]
Compression ratio per stage	-	1.8	
z @ suction pressure	-	1.0255	
z @ final pressure		1.0900	
Compression work	J/mol	3800	
Efficiency compressor		80%	
Efficiency electric motor		90%	
	kWh _e /Nm³	0.0654	
Electricity consumption	kWh _{e/} kg	0.73	
Electricity consumption	MJ _e /kg	2.62	
	MJ _e /MJ _{LHV}	0.0218	

In case of land-based long-distance pipelines typically there is a compressor every 200 km. In case of a submarine pipeline the layout is different, e. g. a larger pipeline diameter for the same transport capacity to avoid compressors.

The energy requirement for re-compression depends on the pressure drop which depends on the roughness of the pipeline, pressure, the pipeline diameter, and the hydrogen throughput. The pressure drop Δp can be calculated by:

$$\Delta p = \left(p_{in}^2 - \lambda \cdot \frac{16}{\pi^2} \cdot \rho_0 \cdot p_0 \cdot \frac{T}{T_0} \cdot l \cdot z \cdot \dot{V}^2 \cdot \frac{1}{d^5}\right)^{0.5}$$

where:

- p_{in} Input pressure of the pipeline in Pa
- λ Pipe friction number
- ρ_0 Density of the hydrogen at standard conditions (0.1013 MPa, 273.15 K)
- p₀ Standard pressure: 101300 Pa
- T Temperature of the pipeline
- T₀ Standard temperature: 273.15 K
- I Pipeline length in m
- z compressibility factor
- \dot{V} Hydrogen flow in Nm³/s
- *d* Pipeline diameter in m

The pipe friction number λ can be calculated by:

$$\lambda = \frac{1}{\left(2 \cdot \log_{10}\left(\frac{d}{k_i}\right) + 1.14\right)^2}$$

where:

- d pipeline diameter
- ki Roughness pipeline in mm in mm

Table 13 shows the energy efficiency of hydrogen transport via long-distance pipeline for a typical long-distance pipeline layout for a distance of 1000 km.

T 40	
Table 13:	Long-distance H ₂ pipeline (1000 km as example)

Parameter	Unit	Value	Comment/ reference
Layout long-distance pipeline			
	Nm³/h	3,600,000	[NEA 2022]
H ₂ input	kg/s	89.995	
- 1	GWLHV	10.80	
Pipeline diameter	mm	1000	[NEA 2022]
Pressure (p _{in})	10⁵ Pa	85	
Distance	km	1000	
Distance between compressor stations	km	200	
Pressure drop			
Density (H ₂)	kg/Nm ³	0.090	
Compressibility factor z (p _{in})	-	1.090	
Compressibility factor z (p _{out})	-	1.068	
Compressibility factor (average)	-	1.079	
Roughness ki	mm	0.02	New gas pipelines
Pipe friction number λ	-	0.009005	
Temperature	К	288	
Velocity (p _{in})	m/s	15.2	
Pressure drop per stage	10⁵ Pa	20.2	
Compressor station			
Number of stages	-	1	
Adiabatic exponent	-	1.402	
T (in)	К	288	T (pipeline)
T (intercooling)	К	333	
Suction pressure	10⁵ Pa	64.8	
Final pressure	10⁵ Pa	85.0	
Compression ratio per stage	-	1.31	
z @ suction pressure	-	1.07	
z @ final pressure		1.09	
Compression work	J/mol	730	
Efficiency compressor	-	80%	
Efficiency gas turbine	-	33%	
H. input compressor	kWh/Nm ³ H2	0.0343	
	MW _{H2, LHV}	123	
H ₂ output after 1 st re-compression	GW _{H2, LHV}	10.67	
Energy related H ₂ input per compressor station	MJ/MJ	1.01156	
Energy efficiency H ₂ transport			
Number of compressor stations		5	
Energy related H ₂ input H ₂ transport total	MJ/MJ	1.0592	1.01157 ⁵
Efficiency H_2 transport	-	94.4%	1/(1.01157 ⁵)

3.5.4 H₂ distribution via pipeline

For hydrogen distribution via regional trunk pipeline electrically driven compressors have been assumed.

Regional hydrogen pipelines often do not contain compressors along the way. Compression from the pressure of the H_2 production plant to the pressure of the pipeline is required, the energy input therefore depends on the pressure in the pipeline system (e. g. 10 and 7.5 MPa in the Air Liquide pipeline in Belgium/France/The Netherlands and 5 MPa entrance pressure in the Gasunie pipeline system to be constructed in The Netherlands with connections to Belgium and Germany [Air Liquide & Gasunie 2022]).

Table 14:Regional trunk H2 pipeline (400 km as example)

Parameter	Unit	Value	Comment/ reference
Layout regional trunk H ₂ pipeline			
	Nm³/h	300,000	
H ₂ input	kg/s	7.49	
	MWLHV	900	
Pipeline diameter	mm	600	
Pressure (p _{in})	10⁵ Pa	30	
Distance	km	400	
Distance between compressor stations	km	200	
Pressure drop			
Density (H ₂)	kg/Nm ³	0.090	
Compressibility factor z (p _{in})	-	1.03	
Compressibility factor z (p _{out})	-	1.03	
Compressibility factor (average)	-	1.03	
Roughness ki	mm	0.02	New gas pipelines
Pipe friction number λ	-	0.010	
Temperature	K	288	
Velocity (p _{in})	m/s	10.0	
Pressure drop per stage	10⁵ Pa	0.090	
Compressor stations			
Number of stages	-	1	
Adiabatic exponent	-	1.402	
T (in)	K	288	T (pipeline)
T (intercooling)	K	333	
Suction pressure	10⁵ Pa	24.9	
Final pressure	10⁵ Pa	30.0	
Compression ratio per stage	-	1.21	
z @ suction pressure	-	1.03	
z @ final pressure		1.03	
Compression work	J/mol	472	
Efficiency compressor	-	80%	
Efficiency electric motor	-	90%	

Unit	Value	Comment/ reference
kWh _e /Nm ³ H2	0.0081	
-	2	
kWh _e /Nm ³ H2	0.0163	
kWh₀/kg _{H2}	0.18	
MJ _e /kg _{H2}	0.651	
MJ _e /MJ _{H2}	0.0054	
	0.48%	[Frazer-Nash 2022]
	Unit kWh _e /Nm ³ _{H2} - kWh _e /Nm ³ _{H2} kWh _e /kg _{H2} MJ _e /kg _{H2} MJ _e /MJ _{H2}	Unit Value kWhe/Nm³H2 0.0081 - 2 kWhe/Nm³H2 0.0163 kWhe/KgH2 0.18 MJe/KgH2 0.651 MJe/MJH2 0.0054 0.48% 0.48%

For the local hydrogen distribution to the refuelling stations no compressors are required. The pressure drop is low. However, there are some hydrogen losses in the local hydrogen distribution too leading to the overall hydrogen losses in the pipeline grid as shown in Table 15.

Table 15:H2 losses in H2 pipeline grids

	Unit	Gasunie 2022	Frazer-Nash 2022 Arrigoni et al. 202		et al. 2022
			99% confidence level	Today	2030
Regional trunk pip	eline:				
H ₂ loss		0.010%	0.48%		
	g/MJ _{H2, LHV} *	0.0008	0.0404		
Local pipeline:					
H ₂ loss			0.53%		
	g/MJ _{H2, LHV} *		0.0444		
Total:					
H ₂ loss			1.01%	1.20%	0.70%
	g/MJ _{H2, LHV} *		0.0848	0.1012	0.0588

*Related to the H_2 delivered to a local H_2 consumer

[Arrigoni et al. 2022] indicates a hydrogen loss of 1.2% for today and 0.7% for 2030 citing a presentation from Air Liquide. The sum of hydrogen losses for the 'National transmission system' and the 'distribution network' in UK indicated in [Frazer-Nash 2022] for a 99% confidence level leads to similar results (~1%). [Gasunie 2022] indicates are rather low value for the hydrogen losses for the planned hydrogen pipeline grid in the Netherlands.

3.5.5 H₂ distribution via tube trailer

The hydrogen leaves the water electrolysis plant at a pressure of between 0.13 and 31 MPa. For trailer refuelling the hydrogen has to be compressed to about 25% above the maximum pressure of the tube trailer (Table 16). Table 17 shows the energy requirement and associated GHG emissions for the transport of hydrogen via tube trailer.

Parameter	Unit	1	2	3	4	5
Maximum pressure tube trailer	10⁵ Pa	248	345	300	500	200
Number of stages	-	3	3	3	3	3
Adiabatic exponent	-	1.402	1.402	1.402	1.402	1.402
T (in)	К	313	313	313	313	313
T (intercooling)	К	333	333	333	333	333
Suction pressure	10⁵ Pa	25	25	25	25	25
Final pressure	10⁵ Pa	310	431	375	625	250
Compression ratio per stage	-	2.3	2.6	2.5	2.9	2.2
z @ suction pressure	-	1.0255	1.0255	1.0255	1.0255	1.0255
z @ final pressure	-	1.3319	1.4622	1.4018	1.6705	1.2674
Compression work	J/mol	9102	11045	10176	13783	8011
Efficiency compressor	-	80%	80%	80%	80%	80%
Efficiency electric motor	-	90%	90%	90%	90%	90%
	kWh _e /Nm ³ H2	0.1568	0.1902	0.1753	0.2374	0.1380
Electricity concumption	kWh _e /kg _{H2}	1.74	2.11	1.95	2.64	1.53
Electricity consumption	MJ _e /kg _{H2}	6.27	7.61	7.01	9.50	5.52
	MJ _e /MJ _{H2}	0.0523	0.0634	0.0584	0.0792	0.0460

Table 16:Compressor for tube trailer refuelling

RFNBO Greenhouse Gas Emissions

List of input/output data and efficiencies

Table 17:H2 transport via tube trailer/bundles of pressure vessels (150 km as example)

Parameter	Unit	Quantum 2022	Quantum 2022	Calvera 2021	Hexagon 2020	M-Tech 2020		
Model		VPLite-H45/40'	VP5000-H		Purus	9 elements	18 elements	18 elements
Length CGH ₂ trailer	ft	40	45		45	18	18	36
Maximum pressure	10⁵ Pa	248	348	300	500	200	200	200
Gross transport capacity	kg H₂	803	1195	960	1400	155	315	630
Net transport capacity*	kg H₂	720	1099	874	1312	136	276	552
Distance (one way)	km	150	150	150	150	150	150	150
Distance (roundtrip)	km	300	300	300	300	300	300	300
	l/100 km	30.5	30.5	30.5	30.5	25.0	25.0	30.5
	MJ/km	11.0	11.0	11.0	11.0	9.0	9.0	11.0
Diesel consumption	MJ/MJ _{H2}	0.0381	0.0249	0.0313	0.0209	0.1653	0.0813	0.0496
	MJ/kg _{H2}	4.57	2.99	3.76	2.50	19.82	9.75	5.96
	MJ/(t _{H2} km)	30.4	19.9	25.1	16.7	132.2	65.0	39.7
Emissions								
CO ₂	g/km	802	802	802	802	657	657	802
	g/MJ _{H2}	2.8	1.8	2.3	1.5	12.1	6.0	3.6
	g/kg _{H2}	334	219	275	183	1452	715	436
	g/(t _{н₂} km)	2230	1460	1835	1223	9681	4763	2908
	g/km	0.034	0.034	0.034	0.034	0.034	0.034	0.034
CH.	g/MJ _{н2}	0.00012	0.00008	0.00010	0.00006	0.00063	0.00031	0.00015
CH4	g/kg _{H2}	0.0142	0.0093	0.0117	0.0078	0.0751	0.0370	0.0185
	g/(t _{H2} km)	0.0945	0.0619	0.0778	0.0518	0.5009	0.2465	0.1232
	g/km	0.020	0.020	0.020	0.020	0.020	0.020	0.020
NO	g/MJ _{H2}	0.000069	0.000046	0.000057	0.000038	0.000368	0.000181	0.000091
N ₂ O	g/kg _{H2}	0.00834	0.00546	0.00686	0.00457	0.04420	0.02175	0.01087
	g/(t _{H2} km)	0.0556	0.0364	0.0457	0.0305	0.2946	0.1450	0.0725
	g/km	809.2	809.2	809.2	809.2	663.9	663.9	809.2
CO. oquivalents**	g/MJ _{H2}	2.8	1.8	2.3	1.5	12.2	6.0	3.7
	g/kg _{H2}	337	221	278	185	1467	722	440
	g/(t _{H2} km)	2249	1472	1851	1233	9781	4813	2933

* At a minimum pressure of 2 MPa; ** based on IPCC AR4

The H_2 losses are low. MAHYTEC indicates a permeation rate of 0.1 Ncm³ per hour and litre of water volume for its 50 MPa pressure vessels with a water volume of 160 to 300 l and a hydrogen storage capacity of 5.0 to 9.5 kg [MAHYTEC 2021]. For a 50 MPa pressure vessel with a water volume of 300 l and a hydrogen storage capacity of 9.5 kg the hydrogen losses will be 0.00068% per day. As a result, the hydrogen losses via permeation for the transport of CGH₂ via truck can be neglected¹.

3.5.6 H₂ transport & distribution via LH₂ trailer

Table 18 shows the assumptions and results for the transport of hydrogen via LH₂ trailer.

Parameter	Unit	Value	Reference/ comment
Gross transport capacity	kg LH₂	3500	Filling ratio: 93%
Ullage	-	5%	LH ₂ remaining in the tank
H ₂ losses		0.5%	Rough estimate
Net transport capacity	kg H ₂	3325	
Distance (one way)	km	400	Assumed as example
Distance (roundtrip)	km	800	
Diesel	l/100 km	30.5	
	MJ/km	11.0	
_	MJ/MJ _{H2}	0.0220	
_	MJ/kg _{H2}	2.64	
_	MJ/(t _{H2} km)	6.59	incl. return voyage (empty)
Emissions			
CO ₂	g/km	802	
_	g/MJ _{H2}	1.6	
_	g/kg _{H2}	193	
_	g/(t _{H2} km)	483	incl. return voyage (empty)
CH ₄	g/km	0.034	
_	g/MJ _{H2}	0.00007	
_	g/kg _{H2}	0.00818	
	g/(t _{H2} km)	0.0205	incl. return voyage (empty)
N ₂ O	g/km	0.020	
-	g/MJ _{H2}	0.000040	
-	g/kg _{H2}	0.00481	

Table 18:H2 transport via LH2 trailer (400 km as example)

¹ In [Frazer-Nash 2022] the hydrogen losses have been indicated with 0.24% per day citing the same reference. However, the authors mixed up the unit in g per hour and kg of hydrogen stored indicated in [Bigelow & Michael 2018] with the Ncm³ per hour and litre of water volume indicated in [MAHYTEC 2021] for the calculation of the daily hydrogen losses.

	g/(t _{H2} km)	0.0120	incl. return voyage (empty)
H ₂	g/MJ _{H2}	0.0419	independent from distance
	g/kg _{H2}	5.025	because only from LH ₂ transfer
CO ₂ equivalent	g/km	809	w/o H ₂ losses
	g/MJ _{H2}	2.09	incl. H ₂ losses, independent
	g/kg _{H2}	251	from distance
	g/(t _{H2} km)	487	incl. return voyage (empty),
			w/o H ₂ losses

In [Frazer-Nash 2022] very high hydrogen losses have been indicated for LH_2 distribution via LH_2 trailer (13.2% for 99% confidence level). The hydrogen losses for LH_2 distribution via LH_2 in [Frazer-Nash 2022] have been derived from the evaporation rate in the LH_2 tank (0.1 to 5% depending on the size and the type of LH_2 storage) which leads to an overestimate of hydrogen losses because dormancy period where no hydrogen loss occur has not been taken into account.

The boil-off gas generation for a 50 m³ cryogenic tank (approximately the size of the LH₂ tank of a LH₂ trailer) amounts to about 0.4% per day [Ghafri et al. 2022]. At the beginning after finishing the refuelling of the LH₂ tank, the boil-off gas generation leads to a pressure increase in the LH₂ tank without releasing hydrogen into atmosphere until the maximum pressure (1.2 MPa) is reached. When the maximum pressure the pressure valve opens and hydrogen is released. This dormancy period amounts to about 30 days for large 50 m³ LH₂ tanks mounted on LH₂ trailers [NHEG 1992]. As a result, H₂ losses only occur during transfer of LH₂ from a stationary LH₂ tank to the LH₂ trailer and from the LH₂ trailer to the stationary LH₂ tank at the refuelling station.

In [Arrigoni et al. 2022] the hydrogen losses from the sum of hydrogen liquefaction and LH2 distribution are indicated with ~10% for today and ~2% for 2030 citing a presentation of Air Liquide. Since for hydrogen liquefaction hydrogen losses of about 1.6% have been assumed for LH₂ distribution about 0.5% have been assumed as a rough estimate if best available technology is applied.

3.5.7 NH₃ transport via inland navigation

LPG carriers can generally be used for the transport of NH₃. In [Schifffahrt-online 2009] a typical inland ship for the transport of gases such as LPG and NH₃ ('LRG Gas 87') is described. The transport capacity of the 8 pressure vessels of the 'LRG Gas 87' amounts to 2831 m³ of LPG. The mass of NH₃ is higher than that of LPG. The cargo also is mass-limited. Therefore, the same mass related transport capacity as for LPG has to be assumed (density of LPG: 0.504 t/m³).

The fuel consumption has been scaled from a different inland ship described in [Schiff und Technik 2021]. The typical fuel consumption of a diesel engine with 2*1700 kW amounts to 500 l of diesel/h upstream and 300 l/h downstream the river. Then, the average fuel

consumption will be 400 l of diesel/h. The fuel consumption has been scaled to that of the inland ship used in this study for NH_3 transport via the rated power of the main engines (634/1700*400 l/h = 149 l/h).

Table 19 shows the assumptions and results for transport of NH₃ via inland ship.

Parameter	Unit	Value	Reference/ comment
Payload	m ³ LPG	2831	Schifffahrt-online 2009
	t NH₃	1427	Same as for LPG, see text
Average speed	km/h	15	Upstream: 10 km/; Downstream: 20 km/h
Fuel consumption	l diesel/h	149	Schifffahrt-online 2009; Schiff und Technik 2021
	l diesel/km	9.95	
	MJ diesel/km	354	
Utilisation	-	50%	Return voyage empty
Distance	km	500	Assumed as example
Eucl concumption incl	MJ/(t _{NH3} km)	0.5002	
ruer consumption incl.	MJ/kg _{NH3}	0.2501	
return voyage	MJ/MJ _{NH3}	0.0135	
	g/(t _{NH3} km)	36.6	
CO ₂ emissions	g/kg _{NH3}	18.3	
	g/MJ _{NH3}	0.99	

Table 19: NH₃ transport via inland ship 'NH₃ carrier LRG GAS 87' (500 km as example

3.5.8 NH₃ transport via pipeline

Table 20 shows the assumptions and results for the transport of NH₃ via pipeline.

Table 20: NH₃ transport via pipeline

Parameter	Unit	Value	Reference/ comment
Distance between NH₃ pumps	km	100	Goff 2020
Conocity	t/d	7800	Goff 2020
Capacity	t/h	325	
Electricity for NH ₃ pumping	kW/pump	1200	Goff 2020
Distance	km	400	Assumed as example
Number of pumps	-	4	
	MJ _e /(t _{NH3} km)	0.1329	
Electricity consumption	MJ/kg _{NH3}	0.0532	
	MJ/MJ _{NH3}	0.00286	

3.5.9 NH₃ transport via train

If only the water volume of the NH_3 tank is indicated, the NH_3 payload has to be calculated. NH_3 is a toxic gas. Measures have to be taken to avoid any NH_3 release. The density of NH_3 changes with temperature.

The 'International. Safety Guide for Inland Navigation Tank-barges and Terminals' [ISGINTT 2010] describes procedures to avoid overfilling of containers. The maximum loading limit (LL) to which a cargo tank may be loaded is determined by the following formula:

$$LL = FL \cdot \frac{\rho R}{\rho L}$$

where:

- FL: filling limit as specified (85% according to [Workforce Safety & Insurance 2003])
- ρR relative density of the cargo at the reference temperature (typically 288 K)
- ρL relative density of the cargo at the loading temperature and pressure (maximum allowable temperature: 328 K)

Table 21 shows the assumptions and results for the transport of NH₃ via electric train.

Table 21: NH₃ transport via train (400 km as example)

Parameter	Unit	Value	Reference/ comment
Water volume container with nurse tank	m ³	24.5	
Filling limit	-	85%	Workforce Safety & Insurance 2003
Density pressurized NH₃ @ 288 K	t/m³	0.61776	
Density pressurized NH ₃ @ 328 K	t/m³	0.55435	Maximum allowed temperature
Loading limit	-	0.76275	ISGINTT 2010, p. 487
m (NH ₃)	t	10.4	
m (container)	t	7.7	
m (NH ₃ + container)	t	18.0	Relevant for payload train
Distance	km	400	Assumed as example
Payload train	t	200	GEMIS 2016
Utilisation	-	50%	GEMIS 2016
	MJ/tkm	0.21	GEMIS 2016
Electricity consumption inclusive return	MJ _e /(t _{NH3} km)	0.365	
voyage with empty NH ₃ containers	MJ/kg _{NH3}	0.146	
	MJ/MJ _{NH3}	0.00787	

3.5.10 NH₃ distribution via truck

Table 22 shows the assumptions and results for the transport of NH₃ via truck.

Table 22:NH₃ distribution via truck (150 km as example)

Parameter	Unit	Value	Reference/ comment
Water volume nurse tank	US gal	10000	TRANACAER 2011
	m ³	37.85	
Filling limit	-	85%	Workforce Safety & Insurance 2003
Density pressurized NH₃ @ 288 K	t/m³	0.61776	
Density pressurized NH₃ @ 328 K	t/m³	0.55435	Maximum allowed temperature
Loading limit	-	0.76275	ISGINTT 2010, p. 487
Transport capacity	t NH₃	16.0	
Distance (one way)	km	150	Assumed as example
Distance (roundtrip)	km	300	
	l/100 km	30.5	
	MJ/km	11.0	
Fuel consumption (diesel)	MJ/(t _{NH3} km)	1.369	incl. return voyage
	MJ/kg _{NH3}	0.205	
	MJ/MJ _{NH3}	0.0110	
Emissions			
	g/km	802	
CO.	g/(t _{ℕH3} km)	100	incl. return voyage
602	g/kg _{NH3}	15.0	
	g/MJ _{NH3}	0.809	
	g/km	0.034	
CH.	g/(t _{ℕH3} km)	0.00425	incl. return voyage
	g/kg _{NH3}	0.000637	
	g/MJ _{NH3}	0.0000343	
	g/km	0.020	
NO	g/(t _{ℕH3} km)	0.00250	incl. return voyage
N ₂ O	g/kg _{NH3}	0.000375	
	g/MJ _{NH3}	0.0000202	
	g/km	809	
CO. oquivalant*	g/(t _{ℕH3} km)	101	incl. return voyage
	g/kg _{NH3}	15.2	
	g/MJ _{NH3}	0.816	

*based on IPCC AR4

3.5.11 Methanol transport via train and truck

The maximum payload of a typical rail car (DOT-111 tank car) amounts to about 89.8 t of liquids. The tar weight of chassis with tank amounts to about 29.5 t. The weight of the chassis alone amounts to about 22.7 t leading to a weight for the tank alone of 6.8 t.

Table 23 shows the assumptions and results for the transport of methanol via electric trains.

Parameter	Unit	Value	Reference/ comment
m (methanol)	t	89.8	DOT-111 tank car
m (tank)	t	6.8	DOT-111 tank car
m (methanol + container)	t	96.6	
Distance	km	400	Assumed as example
Payload train (tank + methanol)	t	200	GEMIS 2016
Utilization		500/	return voyage with
Othization	-	30%	empty tanks
	MJ _e /tkm	0.21	GEMIS 2016
Electricity consumption	MJ _e /(t _{снзон} km)	0.226	
Electricity consumption	MJ/kg _{снзон}	0.0904	
	MJ/MJ _{CH3OH}	0.00453	

Table 23:Methanol transport via train (400 km as example)

Table 24 shows the assumptions and results for the transport of methanol via truck.

Table 24:	Methanol tra	nsport via	truck (400 km as	examp	ole)	1

Parameter	Unit	Value	Reference/ comment
Transport capacity	t	26	
Distance (one way)	km	400	Assumed as example
Distance (roundtrip)	km	800	
Fuel consumption (diesel)	l/100 km	30.5	
	MJ/km	11.0	
	MJ/(t _{снзон} km)	0.843	incl. return voyage
	MJ/kg _{снзон}	0.337	
	MJ/MJ _{CH3OH}	0.0169	
Emissions			
CO ₂	g/km	802	
	g/(t _{снзон} km)	62	incl. return voyage
	g/kg _{снзон}	24.7	
	g/MJ _{снзон}	1.24	
CH ₄	g/km	0.034	
	g/(t _{снзон} km)	0.00262	incl. return voyage
	g/kg _{снзон}	0.001046	
	g/MJ _{снзон}	0.0000525	
N ₂ O	g/km	0.020	
	g/(t _{снзон} km)	0.00154	incl. return voyage
	g/kg _{снзон}	0.000615	
	g/MJ _{снзон}	0.0000309	
CO ₂ equivalent*	g/km	809	
	g/(t _{снзон} km)	62.2	incl. return voyage
	g/kg _{снзон}	24.9	
	g/MJ _{снзон}	1.25	

*based on IPCC AR4

3.6 Hydrogen storage in salt caverns

According to Gasunie the electricity consumption of hydrogen storage in salt caverns is 0.85 kWh electricity per kg hydrogen stored. This includes electricity for hydrogen compression (major part), as well as electricity for drying, and further electricity use at the hydrogen storage location.

According to [Frazer-Nash 2022] the hydrogen losses amount to about 0.04% (50% confidence level: 0.02%; 99% confidence level: 0.06%). Most of the hydrogen losses come from the surface processing plant such as scheduled shutdown release, component maintenance release, and emergency shutdown release.

Please note that only part of the hydrogen that is fed into a hydrogen distribution pipeline will be stored into salt caverns as to solve short- or long-term mismatch of supply and demand. According to [Gasunie 2022], in 2050 typically 20% of hydrogen that is fed into the distribution pipeline is stored in salt caverns. As in practice it will be impossible to allocate storage emissions to individual users of the hydrogen pipeline distribution system, energy requirements and corresponding GHG emissions from the storage can be attributed to all hydrogen flowing through the pipeline distribution system that includes salt cavern storage by using this factor of 20%.

3.7 H₂ refuelling stations

3.7.1 Refuelling station for H₂ delivery via pipeline

The electricity requirement for hydrogen compression depends on the pressure of the hydrogen delivered by the pipeline and the final pressure(s). Table 25 shows the assumptions and results for a hydrogen refuelling station for the refuelling of 70 MPa vehicle tanks.

Unit Value **Reference**/ comment Parameter Stationary bulk H₂ storage 10⁵ Pa 250 Parks et al. 2014, p. 55 Maximum pressure 10⁵ Pa 70 Parks et al. 2014, p. 28 Minimum pressure Primary compression (loading bulk H₂ storage) Number of stages -2 Parks et al. 2014, p. 53 Adiabatic exponent -1.402 Temperature of H₂ delivered by T (in) Κ 288 pipeline T (intercooling) Κ 333 10⁵ Pa Pressure of H₂ delivered by pipeline Suction pressure 30 10⁵ Pa Final pressure 250

Table 25:H2 refuelling station for H2 delivery via pipeline

Parameter	Unit	Value	Reference/ comment
Pressure ration per stage	-	2.9	
z @ suction pressure	-	1.0173	
z @ final pressure		1.1663	
Compression work	J/mol	6991	
Efficiency compressor	-	65.0%	Parks et al. 2014, p. 14
Efficiency electric motor	-	90%	
Electricity consumption	kWh _e /Nm ³ H2	0.1482	
	MJ_{e}/MJ_{H2}	0.0494	
Secondary compression (loading high pressure buffer)			
Number of stages	-	2	
Adiabatic exponent	-	1.409	
T (in)	К	288	
T (intercooling)	К	333	
Suction pressure	10⁵ Pa	132	
Final pressure	10⁵ Pa	880	
Pressure ration per stage	-	2.6	
z @ suction pressure	-	1.0866	
z @ final pressure		1.5928	
Compression work	J/mol	7544	
Efficiency compressor	-	65.0%	Parks et al. 2014, p. 14
Efficiency electric motor	-	90%	
Electricity consumption	kWh _e /Nm ³ H2	0.1599	
	MJ_e/MJ_{H2}	0.0533	
H ₂ refuelling station total			
H ₂ compression	MJ _e /MJ _{H2}	0.1027	
Pre-cooling	MJ_e/MJ_{H2}	0.0405	NREL 2021a (1.35 kWh/kg _{H2})
Total	MJ _e /MJ _{H2}	0.1432	
	MJ _e /kg _{H2}	17.2	
	-	0.25%	Frazer-Nash 2022; MAHYTEC 2021
	g/MJ _{H2, LHV}	0.0210	Related to the H ₂ delivered

3.7.2 Refuelling stations for H₂ delivery via tube trailer

A swap concept is assumed. The tractor truck leaves a full trailer at the refuelling station and takes the empty trailer. The hydrogen is transferred from the tube trailer to the highpressure buffer storage. At the beginning, the suction pressure for the compressor is the same as the maximum working pressure of the tube trailer. The suction pressure decreases with decreasing filling level of the trailer. It has been assumed that the trailer is emptied until a pressure of 2 MPa is reached.

The average suction pressure for the compressor at the refuelling station can be calculated by:

Average suction pressure =
$$e^{\frac{\ln(p_{min}) + \ln(p_{max})}{2}}$$

where

- p_{min} Minimum pressure of the tube trailer
- $p_{\mbox{\tiny max}}$ Maximum working pressure of the tube trailer

Table 26 shows the assumptions and results for hydrogen refuelling stations for H_2 delivery via tube trailer.

RFNBO Greenhouse Gas Emissions List of input/output data and efficiencies

Parameter	Unit	1	2	3	4	5	Reference
Maximum pressure tube trailer	10⁵ Pa	248	345	300	500	200	
Number of stages	-	4	4	4	4	4	
Adiabatic exponent	-	1.402	1.402	1.402	1.402	1.402	
T (in)	К	288	288	288	288	288	
T (intercooling)	К	333	333	333	333	333	
Average suction pressure	10⁵ Pa	70	83	77	100	63	
Final pressure	10⁵ Pa	900	900	900	900	900	
Compression ratio per stage	-	1.9	1.8	1.8	1.7	1.9	
z @ suction pressure	-	1.0743	1.0879	1.0819	1.1061	1.0666	
z @ final pressure	-	1.9661	1.9661	1.9661	1.9661	1.9661	
Compression work	J/mol	11367	10613	10931	9778	11864	
Efficiency compressor	-	80%	80%	80%	80%	80%	
Efficiency electric motor	-	90%	90%	90%	90%	90%	
	kWh _e /Nm ³ H2	0.1958	0.1828	0.1883	0.1684	0.2043	
Electricity consumption H ₂	kWh _e /kg _{H2}	2.18	2.03	2.09	1.87	2.27	
compression	MJ _e /kg _{H2}	7.83	7.31	7.53	6.74	8.17	
	MJ _e /MJ _{H2}	0.0653	0.0610	0.0628	0.0562	0.0681	
	kWh _e /Nm ³ H2	0.1215	0.1215	0.1215	0.1215	0.1215	
Electricity consumption pre-	kWh _e /kg _{H2}	1.35	1.35	1.35	1.35	1.35	NREL 2021a
cooling	MJ _e /kg _{H2}	4.86	4.86	4.86	4.86	4.86	
	MJ _e /MJ _{H2}	0.0405	0.0405	0.0405	0.0405	0.0405	
	kWh _e /Nm ³ H2	0.317	0.304	0.310	0.290	0.326	
Electricity concumption total	kWh _e /kg _{H2}	3.53	3.38	3.44	3.22	3.62	
	MJ _e /kg _{H2}	12.69	12.17	12.39	11.60	13.03	
	MJ _e /MJ _{H2}	0.106	0.101	0.103	0.097	0.109	
		0.25%	0.25%	025%	0.25%	025%	[Frazer-Nash
Hydrogen losses							2022], [MAHYTEC 2021]

Table 26:H2 refuelling stations for H2 delivery via tube trailer

3.7.3 Refuelling station for H₂ delivery via LH₂ trailer

If the hydrogen is dispensed as CGH_2 a high-pressure cryogenic pump will be required. If the hydrogen is dispensed as LH_2 a low-pressure cryogenic pump is required leading to lower electricity consumption.

Parameter	Unit	Dispensed as CGH₂	Dispensed as LH₂	Reference/ comment
Electricity consumption	kWh _e /kg _{H2}	1.20	0.01	[Decker 2019b]; Valentin 2001]
	MJ _e /kg _{H2}	4.32	0.04	
	MJ_{e}/MJ_{H2}	0.0360	0.0003	
H ₂ loss	-	0.25%	2%	[Frazer-Nash 2022], [MAHYTEC 2021], [Arrigoni et al. 2022]
	g/MJ _{H2, LHV}	0.0210	0.170	Related to the H ₂ delivered

Table 27:Refuelling station for H2 delivery via LH2 trailer

[Arrigoni et al. 2022] indicate the hydrogen losses from LH₂ dispensing with 8.5% today and 2% as target for 2020 citing a presentation of Air Liquide. For CGH₂ dispensing the same hydrogen losses as for H₂ delivery via pipeline and CGH₂ trailer is assumed because the LH₂ has to be vaporized in any case to refuel vehicles with CGH₂ tanks.

3.8 Energy requirement for H₂ compression

Generally, the compression ratio per stage should not be more than 3 to 4. Therefore, a multi-stage compressor system is required. To calculate the energy requirement for a multi-stage compressor system the compression ratio for each stage is required. The compression ratio can be calculated by

$$CR = \left(\frac{p_d}{p_s}\right)^{\frac{1}{n}}$$

Where:

CR Compression rato per stage

ps Suction pressure in MPa

- pd Discharge pressure in MPa
- n Number of compression stages

Then, the compression work can be calculated by

$$W_{comp} = \left\{ \frac{\kappa}{\kappa - 1} R \cdot T_s \left[(CR)^{\frac{\kappa - 1}{\kappa}} - 1 \right] + (n - 1) \frac{\kappa}{\kappa - 1} R \cdot T_{IC} \left[(CR)^{\frac{\kappa - 1}{\kappa}} - 1 \right] \right\} \cdot \frac{z_s + z_d}{2}$$

Where:

 W_{comp} Compression work in J per mole of H_2

κ	Isentropic exponent of the gas (H ₂ : 1.402)
R	Gas constant (8.314 kJ/(mol*K))
Ts	Temperature of the gas at suction pressure in K (assumption: 313 K)
T _{IC}	Temperature of the gas after intercooling in K (assumption: 333 K)
CR	Compression ratio per stage
n	Number of compression stages
Zs	Gas compressibility factor at suction pressure
Zd	Gas compressibility factor at discharge pressure

For the calculation of the electricity requirement the compressor efficiency (assumption: 80%) and the efficiency of the electric motor (assumption: 90%) have to be taken into account. To convert the electricity consumption from J per mole of hydrogen to MJ per Nm³ of hydrogen the molar volume of hydrogen is required. The molar volume of every gas amounts to about 22.4 l at normal conditions (T = 273.15 K; p = 0.1013 MPa).

Then, the electricity consumption in MJ per Nm^3 of hydrogen for compression can be calculated by

$$W_{e} = W_{comp} \cdot \frac{1}{\eta_{comp} \cdot \eta_{motor}} \frac{1000 \, l/Nm^{3}}{22.4 \, l/mole} \cdot \frac{1}{1000000 \, J/MJ}$$

Where:

W_e: Electricity consumption in MJ per Nm³ of hydrogen

The density of hydrogen amounts to 0.0900 kg per Nm³ and the lower heating value amounts to 10.80 MJ per Nm³.

Table 28 shows the electricity requirement for H_2 compression for selected input and output pressures.

Input pressure (10 ⁵ Pa)	Output pressure (10 ⁵ Pa)	Compression stages	Electricity requirement (MJ _e /kg _{H2})
1	15	3	5.82
1	20	3	6.55
1	30	3	7.63
1	50	4	8.70
20	50	1	1.95
30	50	1	1.03
30	100	1	2.75
30	150	2	3.67
30	200	2	4.53
30	250	2	5.27
30	300	2	5.93
30	350	2	6.55
30	400	3	6.76
30	450	3	7.26
30	500	3	7.74

Table 28:Electricity requirement for H2 compression for selected input
and output pressures

This table lists calculated electricity requirement for compression, in practice electricity requirements for compression can be higher or lower depending on compression technology and flow rate. Table 29 shows a comparison of calculated electricity consumption and measured electricity consumption data in [Ortiz Cebolla et al 2022].

	-				
Input pressure (10⁵ Pa)	Output pressure (10⁵ Pa)	Compression stages	Electricity	requiremen	t (MJ _e /kg _{H2})
			Calculated	[Ortiz Ce	bolla et al. 2022]
20	100	4	3.4	3.0	Centrifugal
20	500	3	9.0	13.0	Diaphragm
25	450	3	7.8	9.7	Diaphragm
25	450	3	7.8	9.0	Diaphragm
30	450	3	7.3	6.8	Reciprocating
30	450	3	7.3	6.1	Reciprocating
30	450	3	7.3	4.7	Reciprocating
8	500	4	11.5	10.4	lonic
25	500	4	8.0	7.9	lonic
6	900	5	16.2	11.9	lonic
3	900	5	18.9	30.2	Electrochemical
3	950	5	19.4	23.8	Electrochemical
25	1000	4	12.3	15.8	Diaphragm

Table 29:Comparison of calculated electricity requirement for H2
compression with actual measured data

3.9 GHG emission factors

The global warming potential of the various greenhouse gases is expressed in CO₂ equivalents. Table 30 shows the global warming potential of selected greenhouse gases for a period of 100 years according to the Fourth and Fifth Assessment Reports (AR4 and AR5 respectively) of the Intergovernmental Panel on Climate Change (IPCC).

Table 30:	Global warming potentials (GWP) of various greenhouse gases
	[IPCC 2007], [IPCC 2013], [IPCC 2021]

Greenhouse gas	AR4 (g CO _{2eq} /g)	AR5 (g CO _{2eq} /g)*	AR6 (g CO _{2eq} /g)**	Warwick et al. 2022 (g CO _{2eq} /g)
CO ₂	1	1	1	
CH ₄ -renewable	25	28	27.0	
CH ₄ - fossil	25	30	29.8	
N ₂ O	298	265*	273	
H ₂				11±5

* Table 8.A.1 of the Fifth IPCC Assessment Report; **Table 7.15 of the Sixth IPCC Assessment Report

For the calculation of the greenhouse gases for the utilities shown in Table 31 for the supply of energy carriers such as electricity, natural gas, diesel, and coal the same assumptions as in [JEC 2020] has been applied. For PSA adsorbents the production of zeolite described in

[Fawer et al. 1998] has been used as proxy. For Haber-Bosch NH₃ catalysts the production of Fe₃O₄ nanoparticles described in [Rahman et al. 2022] has been used as proxy.

Utility	AR4 (g CO₂eq/kg)	AR5 (g CO₂eq/kg)	AR 6 (g CO₂eq/kg)
Tap water	0.2	0.2	0.2
LN ₂	209	209	209
PSA adsorbent for gas cleaning	2474	2486	2486
Haber-Bosch NH ₃ catalysts	6374	6368	6379

Table 31:Greenhouse gas emission factors for the provision of utilities

3.10 Fuel properties

Table 32 shows selected fuel properties assumed for the calculation of energy related input and output data and efficiencies.

Calculation on emissions in this report only serve as an example. The CO₂ emissions taken into account in the table below are only the combustion emissions. When making GHG calculations following calculation methodologies under the recast Renewable Energy Directive (under article 28.5 and under Annexes V.C and VI.B) also emissions due to the provision must be added, which are for instance emissions due the winning, transport, and refining of fossil fuel. In case of fossil diesel, the upstream GHG emissions amount to about 21.9 g CO₂ equivalent per MJ of diesel leading GHG emissions of 95.1 g CO₂ equivalent including combustion (but excluding the non-CO₂ tailpipe GHG emissions at the vehicle).

Parameter	Unit	H ₂	NH₃	Methanol	Diesel	Marine diesel	LSHFO	Lub. oil
	MJ/kg	119.96	18.59	19.93	43.13	41.94	39.56	36.00
	MJ/Nm ³	10.80						
	MJ/I _{liquid}			15.80	35.88	36.07	39.45	31.43
LUA	kWh/kg	33.32	5.16	5.54	11.98	11.65	10.99	10.00
	kWh/Nm³	3.00						
	kWh/I _{liquid}			4.39	9.97	10.02	10.96	8.73
Doncity	kg/I _{liquid}	0.0709	0.6820	0.7930	0.8320	0.8600	0.9970	0.8730
Density	kg/Nm³	0.0900						
()	g/MJ	-	-	68.9	73.2	75.6	81.1	77.3
	g/kWh	-	-	248	264	272	292	278

Table 32:Fuel properties

It has to be noted that this table shows the fuel properties including the CO_2 released by combustion (The CO_2 from combustion is used e. g. for the calculation of the carbon balance). The GHG emissions or the supply (upstream) and use (combustion) mainly depend

on the feedstock for fuel production and the fuel used for transportation and distribution of the final fuel.

4 LITERATURE

[Air Liquide & Gasunie 2022]	Air Liquide and Gasunie: Personal communication (e-mail) on input from Gasunie and Air Liquid from Neeft, J. (RVO) to Weindorf, W. (LBST); 2022
[Arrigoni et al. 2022]	Arrigoni, A. and Bravo Diaz, L., Hydrogen emissions from a hydrogen economy and their potential global warming impact, EUR 31188 EN, Publications Office of the European Union, Luxembourg, 2022, ISBN 978-92-76-55848-4, doi:10.2760/065589, JRC130362.
[Bigelow & Michael 2018]	Bigelow, Erik, and Lewis, Michael. Conformable Hydrogen Storage Pressure Vessel. United States: N. p., 2018. Web. doi:10.2172/1459184.
[Calvera 2021]	Calvera cited in 'Gasnam: Calvera desarrolla el tráiler para transporte de hidrógeno con mayor capacidad del mercado; 1 December 2021; <u>https://gasnam.es/calvera- desarrolla-el-trailer-para-transporte-de-hidrogeno-con-</u> <u>mayor-capacidad-del-mercado</u> '
[Climeworks 2017]	Climeworks AG, Zurich, Switzerland: Climeworks Plant; 27 September 2017; <u>www.climeworks.com</u>
[Cummins 2021a]	Cummins: HySTAT Alkaline Electrolyzers - HySTA-100; 2021; https://mart.cummins.com/imagelibrary/data/assetfiles/007 0329.pdf
[Cummins 2021b]	Cummins: HyLYZER PEM Electrolyzers - HyLYZER-1000; 2021; https://mart.cummins.com/imagelibrary/data/assetfiles/007 0327.pdf
[DECHEMA 2017]	Gesellschaft für Chemische Technik und Biotechnologie e.V. (DECHEMA), Frankfurt am Main: Low carbon energy and feedstock for the European chemical industry; June 2017; ISBN:978-3-89746-196-2
[Decker 2019]	Decker, L.: Liquid Hydrogen Distribution Technology; HYPER Closing Seminar, Brussels, 11 December 2019
[DNV-GL 2016]	DNV-GL: Use of methanol as fuel - methanol as marine fuel: Environmental benefits, technology readiness, and

	economic feasibility International; report for the Maritime Organization (IMO), 2016
[Fawer et al. 1998]	Fawer, M., Postlethwaite, D., Klüppel, H.J., Life Cycle Inventory for the Production of Zeolite A for Detergents, Int. J. LCA 3 (2) 71 - 74 (1998)
[Frazer-Nash 2022]	Frazer-Nash: Fugitive hydrogen emissions in a future hydrogen economy; March 2022
[Gasunie 2022]	Gasunie, private communication, September 2022
[GEMIS 2016]	Globales Emissions-Modell Integrierter Systeme (GEMIS), version 4.9.3.0, 2016; <u>http://www.iinas.org/gemis-</u> <u>download-de.html</u>
[Goff 2020]	Goff, M. (Black & Veatch): Distribution of Ammonia as an Energy Carrier ; 18 November 2020; <u>https://www.ammoniaenergy.org/topics/pipeline-transport/</u>
[Haberstroh 2019]	Haberstroh, Chr. (TU Dresden): personal communication (e- mail) to Bünger, U. (LBST); 9 January 2019
[Hank et al. 2020]	Hank, C.; Sternberg, A.; Köppel, N.; Smolinka, T.; Schaedt, A.; Hebling, C.; Henning, H.M.: Energy efficiency and economic assessment of imported energy carriers based on renewable electricity; Sustainable Energy Fuels,2020, 4, 22562020; DOI: 10.1039/d0se00067a
[Hexagon 2020]	Fehrenbach, H. (Hexagon): The key role of composite storage systems in hydrogen distribution; Hydrogen online conference 2020
[ICE 2018]	International Contract Engineering (ICE), Isle of Man, British Isles: 84,000 m ³ fully refrigerated LPG carrier; 2018
[IDEALHY 2013]	Integrated design for demonstration of efficient liquefaction of hydrogen (IDEALHY): Hydrogen Liquefaction Report; Deliverable 3.16, Hydrogen Liquefaction LCA Report, 16 December 2013
[IPCC 2007]	Climate Change 2007: Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.): The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press, Cambridge, United Kingdom and New

	York, NY, USA.; https://www.ipcc.ch/site/assets/uploads/2018/05/ar4_wg1_full_report-1.pdf
[IPCC 2013]	Climate Change 2013: Stocker, Th., F.; Qin, D.; Plattner, G- K.; Tignor, M.; Allen, S., K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P., M. (eds.): The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. <u>http://ipcc.ch/report/ar5/</u>
[IPCC 2021]	Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp. doi:10.1017/9781009157896.
[ITM 2022]	ITM Power: Product Spec 2 GEP Skid; <u>https://itm-</u> power.com/products/2gep-skid
[ISGINTT 2010]	ISGINTT: International Safety Guide for Inland Navigation Tank-barges and Terminals; June 2010; <u>https://www.isgintt.org/files/documents/isgintt062010_en.</u> pdf
[Jackson et al. 2019]	Jackson, C.; Fothergill, K.; Gray, F.; Makhloufi, C.; Kezibri, N.; Davery, A.; LHote, O.; Zarea, M.; Davenne, T.; Greenwood, S.; Huddart, A.; Makepeace, J.; Wood, T.; David, B.; Wilkenson, I.: Ammonia to Green Hydrogen Project; 2019
[JEC 2020]	Prussi, M., Yugo, M., De Prada, L., Padella, M. and Edwards, R., JEC Well-To-Wheels report v5, EUR 30284 EN, Publications Office of the European Union, Luxembourg, 2020, ISBN 978-92-76-20109-0 (online), doi:10.2760/100379 (online), JRC121213;

	https://ec.europa.eu/jrc/en/jec/publications/reports-version- 5-2020
[Kamiya et al. 2014]	Kamiya, S.; Nishimura, M.; Harada, E. (Kawasaki): Study on Introduction of CO2 Free Energy to Japan with Liquid Hydrogen; 8 July 2014; ICEC25 & ICMC2014, 7-11 July 2014 @ University of Twente, Enschede, The Netherlands; <u>https://indico.cern.ch/event/244641/contributions/1563161</u> /attachments/418191/580844/OO-2_Shoji_Kamiya-TUE- MO-Plenary_R2.pdf
[Kolff 2021]	Kolff, R.: Converting the LNG-Peakshaver to be fit for processing LH ₂ ; 2021; <u>https://repository.tudelft.nl/islandora/object/uuid:71ac818f</u> -85e2-4cfb-b897-abd25d1bc1cc/datastream/OBJ/download
[Liu et al. 2020]	Liu, X.; Elgowainy, A.; Wang, M.: Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products; Green Chem., vol. 22, no. 17, pp. 5751–5761, 2020, doi: 10.1039/d0gc02301a
[MAHYTEC 2021]	MAHYTEC, France: Datasheet Tank - 500 bar from 160 l to 300 l; 19 July 2021; https://www.mahytec.com/en/compressed-hydrogen- storage/
[M-Tech 2020]	M-Tech Protec Engineering: Inhuur van diensten i.v.m. domein externe veiligheidwaterstoftankstations; Eindrapport, Februari 2020
[NHEG 1992]	Norsk Hydro a.s.; Ludwig-Bölkow-Systemtechnik GmbH: Norwegian Hydro Energy in Germany (NHEG) - Final report; Study on the behalf of the "Bundesministerium für Forschung und Technologie" Germany, the Commission of the European Communities, "Det kongelige olije- og energedepartement", Norwa, Norsk Hydro a.s., and Ludwig-Bölkow-Systemtechnik GmbH; May 1992
[NEA 2022]	Neumann & Esser Aachen (NEA) Group: Hydrogen Transport with Pipelines; accessed 11 July 2022; <u>https://www.neuman-</u> <u>esser.de/en/company/media/blog/hydrogen-transport-with-</u> <u>pipelines/</u>

[Nel 2021]	Nel: The World's Most Efficient and Reliable Electrolysers; 2021; <u>https://96e597bb58d206f85397.b-cdn.net/wp-</u> <u>content/uploads/2020/03/Electrolysers-Brochure-Rev-D.pdf</u>
[O'Connor 2002]	O'Connor, d. (Methanex): Personal communication (e-mail) to Weindorf, W. (LBST); 17 May 2002
[Ortiz Cebolla et al 2022]	Ortiz Cebolla, R., Dolci, F. and Weidner, E., Assessment of Hydrogen Delivery Options, Publications Office of the European Union, Luxembourg, 2022, doi:10.2760/869085, JRC130442.
[Parks et al. 2014]	Parks, G.; Boyd, R.; Cornish, J.; Remick, R.: Hydrogen Station Compression, Storage, and Dispensing: Technical Status and Costs; Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program, Technical Report NREL/BK-6A10-58564, May 2014
[Pérez-Fortes et al. 2016]	Pérez-Fortes, M.; Schöneberger, J., C.; Boulamanti, A.; Tzimas, E.: Methanol synthesis using captured CO ₂ as raw material: Techno-economic and environmental assessment; Applied Energy 161 (2016) 718–732; http://dx.doi.org/10.1016/j.apenergy.2015.07.067
[Pérez-Fortes & Tzimas2016]	M. Pérez-Fortes and E. Tzimas; Techno-economic and environmental evaluation of carbon dioxide utilisation for fuel production. Synthesis of methanol and formic acid; EUR 27629 EN; doi: 10.2790/981669
[Quantum 2022]	Quantum Fuel Systems, Lake Forest, California, USA: Hydrogen on-demand - Hydrogen virtual pipeline trailers for power generation, transportation & mobile stations; 18 April 2022; <u>https://www.qtww.com/wp-</u> <u>content/uploads/2021/02/QT_HydrogenTrailerBrochure_04</u> <u>1522-No-bleeds-final.pdf</u>
[Nieminen et al. 2019]	Nieminen, H.; Laari, A.; Koiranen, T.: CO2 hydrogenation to methanol by a liquid-phase process with alcoholic solvents: A techno-economic analysis; Processes, vol. 7, no. 7, pp. 1–24, 2019, doi: 10.3390/pr7070405
[NREL 2021a]	National Renewable Energy Laboratory (NREL): Next Generation Hydrogen Station Composite Data Products: Retail Stations - Dispenser effficiency and chiller energy for

	700 bar retail stations; 16 September 2021; https://www.nrel.gov/hydrogen/assets/images/cdp-retail- infr-92.jpg
[Rahman et al. 2022]	Rahman, A.; Kang, S.; McGinnis, S.; Vikesland, P., J.: Life Cycle Impact Assessment of Iron Oxide Nanoparticle (Fe3O4/gamma-Fe2O3) Nanoparticle Synthesis Routes; Supporting Information, 2022
[Rouwenhorst et al. 2019]	Rouwenhorst, K. H. R.; Van der Ham, A. G. J.; Mul, G.; Kersten, S. R. A.: Islanded ammonia power systems: Technology review & conceptual process design; Renewable and Sustainable Energy Reviews, vol. 114, no. July 2019, 2019, doi: 10.1016/j.rser.2019.109339.
[TRANACAER 2011]	TRANACAER: Anhydrous Ammonia Course Version 2.0: Section 2: Anhydrous Ammonia Cargo Trailers, Nurse Tanks and Straight Trucks/Bobtails; 2011; <u>https://www.transcaer.com/sites/default/files/documents/Tr</u> <u>anscaer_Ammonia_Training_2011Transports_IG_rev10.pd</u> <u>f</u>
[Schifffahrt-online 2009]	Gastanker "LRG Gas 87" der Lehnkering Reederei GmbH seit 15.1.2009 im Einsatz; 25. Februar 2009; S. 28-30; <u>http://www.huskyteam.de/archivausgaben/schifffahrt-</u> <u>online%202009-2%20februar.pdf</u>
[Schiff und Technik 2021]	Schiff und Technik: Binnenschifffahrt und Umwelt; 2021; http://www.schiffundtechnik.com/lexikon/b/binnenschifffa hrtumwelt.html
[Siemens 2022]	Siemens: Silyzer 300 - The next paradigm of PEM electrolysis; 2022
[Smith et al. 2020]	Smith, C.; Hill, A. K.; Torrente-Murciano, L.: Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape; Energy Environ. Sci., 2020, 13, 331, doi: 10.1039/c9ee02873k.
[Sunfire 2022]	Sunfire, Dresden, Germany: Technical data Sunfiere-HyLink Alkaline; 20 May 2022; <u>https://www.sunfire.de/files/sunfire/images/content/Sunfire</u> . <u>.de%20(neu)/Sunfire-Factsheet-HyLink-</u> <u>Alkaline_20220520.pdf</u>
[Swiss Liquid Future 2020]	Swiss Liquid Future, private communication, 15 June 2020

Zschocke, A. (Thyssenkrupp): Alkalische Wasserelektrolyse von thyssenkrupp: Fortschrittliche Technologie für Power- to-X-Anwendungen; 8. Hypos Dialog Leipzig, 27 February 2019
Valentin, B.: Wirtschaftlichkeitsbetrachtung einer Wasserstoffinfrastruktur für Kraftfahrzeuge; Diplomarbeit, Fachhochschule München / Unversity of Applied Sciences, Fachbereich Wirtschaftsingenieurwesen, München, in Zusammenarbeit mit der Linde AG, Höllriegelskreuth; November 2001
Van-Dal, É., S.; Bouallou, C.: Design and simulation of a methanol production plant from CO2 hydrogenation; Journal of Cleaner Production 57 (2013) 38-45; <u>http://dx.doi.org/10.1016/j.jclepro.2013.06.008</u>
Warwick, N.; Griffiths, P.; Keeble, J.; Archibald, A.; Pyle, J.; Shine, K.: Atmospheric implications of increased hydrogen use; April 2022
Wärtsilä: Encyclopedia of Ship Technology; Second Edition, 2015
2003] Workforce Safety & Insurance 2003: Anhydrous ammonia - Handling and storage; June 2003; https://nydairyadmin.cce.cornell.edu/uploads/doc_217.pdf
Wurzbacher, J., A.: Development of a temperature vacuum swing process for CO ₂ capture from ambient air; 2015; <u>https://www.research-</u> collection.ethz.ch/handle/20.500.11850/100543
Wurzbacher, J., A. (Climeworks): Capturing CO ₂ from Air; Herbstworkshop Energiespeichersysteme, TU Dresden 29 November 2017; <u>https://tu-</u> <u>dresden.de/ing/maschinenwesen/iet/ess/ressourcen/dateien</u> /herbstworkshop-ess-2017/V4-HW2017-Jan-Wurzbacher- Capturing-CO2-from-Air-Climeworks.pdf?lang=en

COMPANY PROFILE OF LBST

Ludwig-Bölkow-Systemtechnik GmbH (LBST) is an expert consultant for sustainable energy and mobility. With our expertise bridging technologies, markets, and policy we support international clients from industry, finance, politics, and non-governmental organisations in strategy, feasibility, and market assessments. International blue-chip companies trust in our reliable judgment.

Our cutting-edge competence is based on four decades of continuous experience, and on our interdisciplinary team of leading experts.

LBST supports its clients with

SYSTEM & TECHNOLOGY STUDIES	Techno-economic assessment; due diligence; energy and infrastructure concepts; feasibility studies;
POLICY CONSULTING	Techno-economic assessment; future scenarios and strategies; analysis and support to the development of regulatory frameworks; evaluations;
STRATEGY CONSULTING	Product portfolio analysis, identifying new products and services; market analysis, decision support, and policy support;
SUSTAINABILITY CONSULTING	Life cycle and carbon footprint analysis; natural resources assessment (energy, minerals, water); sustainability due diligence;
COORDINATION	Project management, monitoring and assessment; and
CAPACITY BUILDING	Studies, briefings, expert workshops, trainings.

Particular expertise exists in energy (renewables, energy storage, hydrogen and fuel cells) and mobility (fuels and drives, infrastructure, mobility concepts), with our work in sustainability cutting across all sectors.

A key common denominator of all activities is the rigorous system approach, making sure all relevant elements of a tightly networked system are taken into account, providing our customers with a comprehensive and complete basis for their decisions.

With our deep understanding of developments and technologies and our truly independent advice, we help our clients with sustainable decisions to secure their future.

Ludwig-Bölkow-Systemtechnik GmbH

Daimlerstrasse 15 · 85521 Ottobrunn · Germany phone: +49 89 6081100 · fax: +49 89 6099731 email: info@lbst.de · web: <u>http://www.lbst.de</u>

