Samenvattend eindrapport LowEx

EOS-LT Lowex

Datum Juli 2013

Sabine Jansen (TU-Delft), Lisje Schellen (TU-Eindhoven), Bram Entrop (Universiteit Twente)

In opdracht van Agentschap NL (nu Rijksdienst voor Ondernemend Nederland)

Publicationnr RVO-151-1501/RP-DUZA
www.rvo.nl

Dit rapport is tot stand gekomen in opdracht van het ministerie van Economische Zaken.
Oplegnotitie

LOWEX

EOS langetermijnproject in opdracht van Agentschap NL

CONCEPT

Arjen Raue (TU Delft)

Met bijdragen van
- Sabine Jansen (TU Delft)
- Lisje Schellen (TU Eindhoven)
- Bram Entrop (Universiteit Twente)

juli 2013
Inhoud

1 Inleiding ... 3
 1.1 LowEx ... 3
 1.2 Exergie .. 3
 1.3 Aanleiding .. 4
 1.4 Visie ... 5
 1.5 Probleemstelling en doelstelling van LowEx ... 5

2 People ... 6
 2.1 Probleemstelling ... 6
 2.2 Doelstelling ... 7
 2.3 Onderzoeksvragen ... 7
 2.4 Aanpak ... 7
 2.5 Resultaten ... 8
 2.6 Resultaten in het licht van LowEx ... 9
 2.7 Referenties ... 10

3 Planet ... 11
 3.1 Probleemstelling .. 11
 3.2 Doelstelling .. 12
 3.3 Onderzoeksvragen ... 12
 3.4 Aanpak ... 12
 3.5 Resultaten ... 13
 3.6 Resultaten in het licht van LowEx ... 15
 3.7 Referenties ... 15

4 Profit ... 16
 4.1 Probleemstelling .. 16
 4.2 Doelstelling .. 16
 4.3 Onderzoeksvragen ... 17
 4.4 Aanpak ... 17
 4.5 Resultaten ... 17
 4.6 Resultaten in het licht van LowEx ... 18
 4.7 Referenties ... 20

5 Lessen uit LowEx .. 21
1 Inleiding

1.1 LowEx

De volledige titel van LowEx is ‘Energetische systeemaanpak - voor een efficiënte, mensvriendelijke en betaalbare inzet van energie in de gebouwde omgeving’. LowEx is een project binnen de regeling “Energie Onderzoek Subsidie: Lange Termijn” ook wel aangeduid als EOS-LT. Binnen het project zijn promotieonderzoeken op de vlakken people, planet en profit als volgt ingevuld door de drie technische universiteiten: comfort (TU Eindhoven), technische exergieanalyse (TU Delft) en profit (UTwente).

Een beknopte toelichting van het exergieconcept wordt in de volgende paragraaf gegeven. Een uitgebreidere toelichting over het concept en zijn toepassingen in de gebouwde omgeving is gegeven in het proefschrift van Sabine Jansen.

1.2 Exergie

Exergie is o.a. een maatstaf voor de kwaliteit van energie. Exergie kan uitgedrukt worden als de maximale hoeveelheid nuttige arbeid die verkrijgbaar is door gebruik te maken van een verschil in toestand (b.v. temperatuur, druk, chemische samenstelling) tussen een energiedrager (b.v. stoom, brandstof) en zijn omgeving. Hoe hoger dit toestandsverschil, des te meer nuttige arbeid winbaar is door de energiedrager op gecontroleerde (omkeerbare) wijze in evenwicht te brengen met zijn omgeving, en des te groter de exergieinhoud van de energiedrager. Met behulp van het exergieprincipe kan de ideale omzetting van de ene verschijningsvorm van energie in de andere worden bepaald, zoals bijvoorbeeld voor omzetting van warmte naar electriciteit. In echte processen zijn er echter altijd exergieverliezen. Deze verliezen vertegenwoordigen het ideale verbeterpotentieel (Improvement potential, Van Gool 1997) en dit verbeterpotentieel kan niet met enkel energieanalyse worden vastgesteld.

¹Het Internationale Energieagentschap wordt hier aangeduid als IEA
²COST is een Europees kennisnetwerk voor wetenschappers
Als je dit een mooi plaatje vindt kan ik de teksten in NL maken.

In bovenstaande figuur is het verbeterpotentieel van de voorziening van verwarming, koeling, warm tapwater en electriciteit voor de Agentschap NL referentiewoning met combiboiler weergegeven. Het theoretisch maximale verbeterpotentieel is het verschil tussen de exergie van de behoefte en de exergie van de gebruikte input. Hieruit blijkt duidelijk het grote verbeterpotentieel, met name voor verwarmingssystemen (ruimteverwarming en tapwater).

Het exergieconcept wordt al jaren toegepast in de chemische en energieindustrie om energieprocessen te optimaliseren. Een belangrijk leidend principe bij deze optimalisatie is om vraag en aanbod op elkaar af te stemmen, niet alleen op hoeveelheid (b.v. vermogen) maar ook op kwaliteit (b.v. temperatuurniveaus). Toepassing van exergie in de gebouwde omgeving is echter nieuw. Omdat de omgeving waarin mensen leven en werken in gebouwen relatief dichtbij de buitenomgeving ligt (vergeleken met b.v. de omstandigheden in een bakstenenoven of elektriciteitscentrale), zouden lage-exergiemiddelen (bijvoorbeeld lagetemperatuur verwarming) in principe toereikend zijn om aan een belangrijk deel van de menselijke behoefte aan comfort en gezondheid in gebouwen te voldoen. Veel energiesystemen werken echter met hogere exergiebronnen (bijvoorbeeld brandstoffen), waarvan de exergie grotendeels onbenut blijft tijdens energieomzetting (b.v. van brandstof naar warmte) en -overdracht (b.v. van hoge naar lage temperatuur). Het verbeterpotentieel van verwarmings en koelsystemen voor de gebouwde omgeving is dus groot.

1.3 Aanleiding

Een substantiële vermindering van de inzet van hoogwaardige energiebronnen ten behoeve van gebouwgebonden functies (verwarmen, koelen, ventileren) is een onontbeerlijke schakel in de verduurzaming van de energievoorziening in de gebouwde omgeving.

Dit onderzoek stelt de exergetische systeembenadering centraal, als een rode draad in de integratie tussen mens, gebouw en bijbehorende energiesystemen, ter bevordering van een verregaande reductie van de inzet van fossiele én vernieuwbare energiebronnen in de gebouwde omgeving.
Het onderzoek richt zich op een verkenning van mogelijkheden om exergie te gebruiken om vernieuwend inzicht te krijgen in de samenhang tussen menselijke behoeften (gezondheid en comfort) en de inzet van energiesystemen (warmte en elektriciteit) in de gebouwde omgeving. Daarbij is de mogelijke rol van exergie als drijvende kracht voor innovatie en systeemverbetering een belangrijke overkoepelende vraag.

De exergetische systeemenbenadering is overigens niet alleen van toepassing op het fossiele energiebebruik. Ook vernieuwbare energiebronnen kunnen door de exergetische systeemenbenadering efficiënter worden ingezet.

1.4 Visie

De exergetische systeemenbenadering geeft mogelijkheden om effectiever gebruik te maken van hoogwaardige energiebronnen voor het verwarmen, koelen en ventileren van gebouwen. Om dit te realiseren zijn nieuwe inzichten interdisciplinaire kennis nodig. Deze kennis en inzichten dienen geïntegreerd te worden in nieuwe ontwerpparadigma’s, waar een nauwe samenhang tussen exergie, economie en thermisch comfort centraal staat. Deze samenhang bestrijkt een brede keten, van mens naar gebouw naar wijk.

De exergiebenadering kan bijdragen aan een substantiële vermindering van de inzet van hoogwaardige energiebronnen in de gebouwde omgeving. Door verschillende energievormen te waarderen op kwaliteit, kunnen de exergieverliezen van het systeem evenals de ezergieverliezen per omzetting of systeecomponent worden bepaald, wat een groot inzicht geeft in welke componenten het meest kwaliteit verspillen, bijvoorbeeld door hoogwaardige energie zoals gas in laagwaardige energie zoals warmte om te zetten.

1.5 Probleemstelling en doelstelling van LowEx

In de gebouwde omgeving wordt hoogwaardige energie ingezet om laagwaardige energie te leveren ten behoeve van menselijk thermisch comfort. Het reduceren van exergieverliezen - bijvoorbeeld door het afstemmen van kwaliteitsniveaus van de vraag en de voorziening - heeft veel potentieel om de benodigde inzet van fossiele én vernieuwbare energiebronnen ten behoeve van gebouwgebonden functies (verwarmen, koelen, ventileren) te minimaliseren. De realisatie van deze afstemming vereist echter interdisciplinaire kennis en toegankelijke methodieken die ontwerpers, investeerders en gebruikers in staat stellen om verbeteringsmogelijkheden cq. knelpunten te identificeren, te kwantificeren en te vertalen in integrale ontwerpbeslissingen.

De probleemstelling verwijst naar de behoefte om thermodynamische kennis interdisciplinair te ontwikkelen en toe te passen ter onderbouwing van ontwerpbeslissingen en investeringen die bijdragen aan verregaande verduurzaming van de energievoorziening in de gebouwde omgeving, over de hele keten van mens, gebouw en wijk.

LowEx beoogt bij te dragen aan een substantiële vermindering van de inzet van zowel fossiele als vernieuwbare energiebronnen voor gebouwgebonden functies (verwarmen, koelen, ventileren). Deze vermindering berust op een integrale afstemming tussen energievraag en –aanbod.
Het project LowEx rust op de drie pijlers van duurzaam ondernemerschap: people, planet en profit. Deze visie is overeenkomstig met de EOS-LT strategie. De kracht hierbij zit in de interdisciplinaire benadering ter versterking van de interface tussen ontwerp, realisatie en gebruik.

In de volgende drie hoofdstukken worden de drie promotieonderzoeken behandeld waarmee invulling is gegeven aan de thema’s People, Planet en Profit.

2 People

Het onderdeel people richt zich op het vergroten van de kennis over de interactie tussen het gebouwsysteem, binnenklimaat en menselijke fysiologie. Deze kennis is benodigd voor het succesvol toepassen van lage exergiesystemen voor de levering van warmte, koude en ventilatie met als doel het creëren van een comfortabel binnenklimaat.

Een belangrijke voorwaarde voor het succesvol toepassen van dergelijke systemen is het thermisch comfort. Thermisch comfort is een complex fenomeen: het wordt behalve door de omgeving ook door persoonsgebonden factoren bepaald. In de huidige bouwpraktijk wordt tijdens de ontwerpfase vaak het PMV (predicted mean vote) model gebruikt, maar in de praktijk blijkt dat het daadwerkelijke thermisch comfort van individuele gebouwgebruikers significant kan afwijken. Dit is te verklaren doordat de PMV een voorspelling doet voor de gemiddelde voorkeur van een grote groep mensen, terwijl in praktijk individuele verschillen een rol blijken te spelen, zowel op psychologisch als op fysiologisch vlak. Ook is het PMV-model niet geschikt voor dynamische en niet-uniforme omgevingen, zoals die bij laag-exergetische klimaatsystemen kunnen voorkomen.

Door gebruik te maken van een alternatief thermofysiologisch model, bijvoorbeeld ThermoSEM³, is het mogelijk om gedetailleerd, op basis van individuele lichaamskarakteristieken, de fysiologische responsies te voorspellen onder gecombineerde asymmetrische randvoorwaarden. Aan de hand van deze fysiologische responsies is het beter mogelijk om het thermisch comfort te voorspellen.

2.1 Probleemstelling

Een optimaal exergiegebruik leidt niet automatisch tot een hoger thermisch comfortniveau. Lage exergiesystemen kenmerken zich door een klein temperatuurverschil tussen het verwarmend of koelend medium naar een ruimte en de gewenste comforttemperatuur in die ruimte. Terwijl een dergelijk klein temperatuurverschil bij kan dragen aan een efficiënte inzet van energiebronnen, vereist de handhaving én verbetering van thermisch comfort binnen deze randvoorwaarden vernieuwende aanpakken.

Niet-uniforme omgevingscondities, die kunnen ontstaan door toepassing van laag exergetische systemen, kunnen discomfort veroorzaken. Discomfort (globaal en lokaal) kan ontstaan door

³ ThermoSEM is een thermofysiologisch model dat door de Universiteit Maastricht en de Technische Universiteit Eindhoven ontwikkeld is (van Marken Lichtenbelt, 2004 en 2007).
bijvoorbeeld ongewenste luchtstromingen (zoals bij natuurlijke ventilatie in combinatie met lage temperatuur verwarming), plaatselijke verschillen in thermisch comfort en temperatuurfluctuaties. De luchtstromingen die ontstaan kunnen kritisch zijn, zowel voor situaties waarin verwarmd wordt (bijvoorbeeld een koudevalsituatie waarbij compensatie in de vorm van lage temperatuurvloerverwarming aanwezig is), als voor situaties waarin gekoeld wordt.

2.2 Doelstelling

Een goed thermisch comfort is een voorwaarde voor het succesvol toepassen van laag exergetische systemen. Dit deelonderzoek beoogt de ontwikkeling van kennis met betrekking tot het ontwerpen van laag exergetische warmte- en koude-afgiftesystemen in relatie tot een goed thermisch comfort. Daarnaast beoogt dit onderzoek meer kennis te ontwikkelen met betrekking tot de interactie tussen het systeem, het binnenklimaat en het menselijk lichaam om optimale systemen (voor de levering van warmte, koude en verse lucht) te kunnen ontwerpen.

2.3 Onderzoeksvragen

De centrale onderzoeksvraag van ‘People’ luidde:

_Hoe kan men thermisch comfortabele lage exergiesystemen ontwerpen?

Deze vraag is verder toegespitst op de volgende aspecten:

- Onder welke omstandigheden zijn bestaande modellen, zoals het PMV-model, niet geschikt om het comfort van de gebruiker te voorspellen bij toepassing van LowEx klimaatinstallaties?
- Hoe gevoelig is het thermofysiologisch model (ThermoSEM) voor variaties in de randvoorwaarden?
- Hoe kunnen CFD-simulaties worden gebruikt om die randvoorwaarden te bepalen?
- Hoe dienen LowEx-systemen te worden onderzocht en beoordeeld vanuit het oogpunt van thermisch comfort?

2.4 Aanpak

Om deze vragen te beantwoorden, is gebruik gemaakt van klimaatkameronderzoek, theoretisch onderzoek met het thermofysiologische model ThermoSEM en computersimulaties met CFD-modellen (Computational Fluid Dynamics).

Gezien de typische eigenschappen van exergetisch geoptimaliseerde klimaatconcepten heeft het onderzoek zich vooral gericht op het thermisch comfort onder niet-uniforme condities. Deze niet-uniformiteit is vanuit twee verschillende standpunten onderzocht:

- aan de hand van de omgeving (niet-uniforme en dynamische thermische omgevingscondities)
- aan de hand van de mens (verschillende subpopulaties; mannen vs. vrouwen en jong volwassenen vs. ouderen).
Met betrekking tot het dynamische gedeelte en de ontwikkeling van thermoSEM op het gebied van het voorspellen van thermisch comfort heeft een intensieve samenwerking plaatsgevonden met het EOS LT DP2015 project (Duurzame projectontwikkeling gebaseerd op duurzaam bouwen, renoveren en wonen na 2015). De volgende cases, met proefpersonen, zijn onderzocht:

Dynamische condities:

1. Een oplopende en afnemende omgevingstemperatuur (± 2K/u), in vergelijking met een constante omgevingstemperatuur

Niet-uniforme omgevingscondities:

2. Passieve koeling d.m.v. convectie door mengventilatie
3. Actieve koeling d.m.v. convectie door mengventilatie
4. Actieve koeling d.m.v. convectie door verdringingsventilatie
5. Actieve koeling d.m.v. straling vanuit het plafond, met mengventilatie
6. Actieve koeling d.m.v. straling vanuit de vloer, met mengventilatie
7. Actieve koeling d.m.v. straling vanuit de vloer, met verdringingsventilatie
8. Koudeval i.c.m. een Laag Temperatuur Verwarmingssysteem (LTV)

2.5 Resultaten

De belangrijkste resultaten van het onderzoek zijn:

Dynamische condities (Schellen et al., 2010, Kingma et al., 2012):

- Een temperatuurverloop tot circa 2K/u, in een temperatuurbereik van 17-25°C, wordt als acceptabel beoordeeld en leidt niet tot onacceptabele condities ten aanzien van het thermisch comfort.
- Ouderen beleven in het algemeen een thermische sensatie die 0,5 punten (op de 7-punts thermische sensatieschaal van ASHRAE) lager ligt dan de thermische sensatie van jongeren onder dezelfde thermische omstandigheden. Hierdoor geven ouderen de voorkeur aan een hogere omgevingstemperatuur dan jong volwassenen.
- In tegenstelling tot ouderen kunnen jong volwassenen baat hebben bij dynamisch thermische condities in termen van gezondheid.

Niet-uniforme condities (Schellen et al., 2012, 2013, in press):

- Onder niet-uniforme omgevingscondities hebben lokale effecten, zoals de lokale huidtemperaturen, een significante invloed op de algehele thermische sensatie en het algehele thermisch comfort. Dit effect was voornamelijk waar te nemen bij de vrouwelijke proefpersonen.
- Voor de vrouwelijke proefpersonen heeft afkoeling van de extremiteiten (armen en handen) een significante invloed op de algehele thermische sensatie en comfortbeleving.
- Gecombineerde lokale discomfortfactoren leiden tot significante afwijkingen van de PMV, ook als die discomfortfactoren individueel binnen de gangbare limieten vallen.
- Wanneer er gekoeld dient te worden, dan dient de omgevingstemperatuur voor vrouwen hoger te zijn om de tevredenheid met de thermische omgeving te verhogen. Daarnaast dient, om algeheel thermisch comfort te bewerkstelligen, de nadruk te liggen op lokale effecten.

- Onder niet-uniforme omgevingscondities is alleen de operatieve temperatuur niet voldoende voor het voorspellen van de thermische sensatie.

- Verticale temperatuurgradiënten tot 4K/m kunnen acceptabel zijn, zelfs in combinatie met een gekoelde vloer.

- Zowel de experimentele als numerieke resultaten laten zien dat de huidige vuistregel een te conservatieve voorspelling geeft voor het optreden van hinderlijke koudeval.

- Een verhoogde vloertemperatuur, door een LTV systeem, kan resulteren in meer hinderlijke koudeval. Daarom wordt aanbevolen om de vuistregel aan te passen door de vloertemperatuur hierin op te nemen.

In het algemeen laten de resultaten zien dat vrouwen en ouderen dezelfde thermische condities als kouder en onbehaaglijker beoordelen dan jong volwassen mannen.

Voorspelling van thermisch comfort:

- Op basis van de resultaten wordt een nieuwe aanpak gepresenteerd voor het voorstellen van de thermische sensatie onder dynamische omstandigheden, gebaseerd op lichaamskaracteristieken, fysiologische processen en de neurofysiologie van de thermische perceptie en regulatie, zoals verwerkt in het model ThermoSEM.

- Het gebruik van ThermoSEM in combinatie met de norm ISO 14505 lijkt veelbelovend voor het voorspellen van het lokale en algehele thermische comfort onder constante niet-uniforme omgevingscondities tijdens de ontwerp fase.

2.6 Resultaten in het licht van LowEx

In de huidige normen en richtlijnen voor het voorspellen en beoordelen van thermisch comfort wordt geen aandacht besteed aan de verschillen in thermische perceptie op subpopulatie-niveau. Echter, tussen verschillende subpopulaties (mannen-vrouwen, jongeren-ouderen) treden significante verschillen op in de thermische comfortbeleving onder dezelfde omstandigheden. In het algemeen hebben ouderen en vrouwen het kouder en voelen zij zich minder comfortabel dan jong volwassen mannen onder dezelfde omstandigheden. Het is van belang om rekening te houden met deze verschillen wanneer het thermisch comfort voorspeld wordt tijdens het ontwerp stadium van een gebouw.

Een geleidelijk veranderende omgevingstemperatuur (*temperature drift*) lijkt meer potentie te bieden voor het gelijktijdig verbeteren van thermisch comfort, gezondheid en energiebesparing dan een constante omgevingstemperatuur. Dit biedt kansen voor LowEx-verwarming en -koelsystemen, omdat deze vaak berusten op lage temperatuurverwarming en hoge temperatuurkoeling. Dit zijn meestal traag reagerende systemen, waarbij de ruimtetemperatuur in de loop van de dag geleidelijk verandert. De resultaten binnen het onderdeel *people* laten zien dat gematigde temperatuurveranderingen tot 2K/uur acceptabel zijn als energiebesparende strategie voor kantoorgebouwen.
Onder niet-uniforme omgevingscondities, zoals die kunnen optreden bij toepassing van LowEx-klimaatsystemen, spelen voornamelijk lokale effecten (lokale huidtemperaturen en sensatie) een rol. Onder deze condities is alleen de operatieve temperatuur niet voldoende voor het voorspellen van het thermisch comfort. Ook al liggen de individuele discomfortfactoren binnen de comfortlimieten en kan de omgeving als comfortabel beoordeeld worden volgens de richtlijnen, dan kan een combinatie van deze discomfortfactoren toch tot een oncomfortabele situatie leiden.

De bevinding dat vloerkoeling in combinatie met een verdringingsventilatiesysteem, waarbij temperatuurgradiënten tot 4K/m op kunnen treden, behaaglijker zijn dan voorheen werd aangenomen, vergroot de mogelijkheden voor LowEx koeling.

Ten slotte geven de resultaten aanleiding om extra aandacht te besteden aan het voorkómen van koudeval bij vloerverwarming (een LowEx-principe), al blijkt het gangbare ontwerpcreterium voor koudeval te conservatief.

2.7 Referenties

Proefschrift

International journal publications (ISI)

Nederlandse publicaties
3 Planet

Sabine Jansen: Exergy in the built environment: The added value of exergy in the assessment and development of energy systems for the built environment

In het onderdeel *planet* is gezocht naar een samenhang op gebouwen- en systeemniveau tussen de domeinen bouwkunde en energievoorziening. Aan de TU Delft zijn de tweede hoofdwet van de thermodynamica en exergieanalyses ingezet om het thermodynamische verbeterpotentieel van de huidige energievoorziening voor gebouwen te bepalen en methoden aan te reiken voor de ontwikkeling van systemen die de inzet van fossiele én vernieuwbare energiebronnen voor gebouwgebonden functies (verwarmen, koelen, tapwater) kunnen minimaliseren. Thermisch comfort en economie zijn hierbij randvoorwaarden. Een integrale benadering van de exergieketen, gericht op een samenhang op meerdere schaalniveaus tussen menselijke behoeften, gebouw eigenschappen en energievoorziening, is een noodzakelijke voorwaarde voor een substantieel efficiëntere inzet van fossiele én vernieuwbare energiebronnen in de gebouwde omgeving.

3.1 Probleemstelling

De exergiebenadering kan bijdragen aan de ontwikkeling van duurzame energiesystemen voor de gebouwde omgeving door een efficiëntere en slimme inzet van fossiele én vernieuwbare energiebronnen te bevorderen.

Toepassing van het exergieconcept in de gebouwde omgeving is echter nog relatief nieuw en daardoor nog niet gebruikelijk bij de ontwikkeling van energiesystemen voor de gebouwde omgeving. Daarnaast is het inzicht in de toepasbaarheid en toegevoegde waarde nog beperkt.

Dit gebrek aan kennis en inzicht bevat de volgende vier belangrijke punten:

1) Het exergieconcept en de toegevoegde waarde t.o.v. het energieconcept wordt door de meeste bouwkundigen en energie-adviseurs voor de gebouwde omgeving niet voldoende begrepen.
2) Bestaande exergie-analyse methoden voor de gebouwde omgeving zijn niet compleet: bepaalde kennis over de uitvoering van exergielijnen in de gebouwde omgeving ontbreekt.
3) Er is onvoldoende inzicht in het thermodynamisch verbeterpotentieel van de huidige (state of the art) energiesystemen en in de toegevoegde waarde van exergie voor de beoordeling en analyse van deze systemen.
4) Kennis over hoe het exergie concept kan bijdragen aan de ontwikkeling van verbeterde energiesystemen voor de gebouwde omgeving is beperkt en niet uitgebreid onderzocht.

3.2 Doelstelling

De algemene doelstelling van het onderzoeks onderdeel ‘Planet’ is het verkennen en aantonen van de toegevoegde waarde van de exergie benadering als aanvulling op de energie benadering voor de beoordeling van energiesystemen voor de gebouwde omgeving en voor de ontwikkeling van slimmere systemen met verminderde input van hoogwaardige energiebronnen.

Deze doelstelling is onderverdeeld in de volgende subdoelen:

1) Het op toegankelijke wijze communiceren van het exergiebegrip en de onderzoeksresultaten, aan bouwkundigen en gebouwadviseurs. (‘Understanding Exergy’)

2) Het aanvullen van de bestaande exergie-analyse methoden voor de gebouwde omgeving door middel van het onderzoeken van ontbrekende kennis. (‘Applying Exergy’)

3) Het analyseren van de exergieprestatie en het verbeterpotentieel van een aantal huidige energiesystemen voor de gebouwde omgeving en het onderzoeken van de toegevoegde waarde van de exergie-analyse. (‘Analyzing Exergy Performance’)

4) Het verkennen van de toepassingsmogelijkheden van het exergieconcept voor de ontwikkeling van duurzamer energiesystemen voor de gebouwde omgeving. (‘Improving with Exergy’)

3.3 Onderzoeksvragen

De overkoepelden onderzoeksvraag van ‘Planet’ is als volgt gedefinieerd:

Wat is de toegevoegde waarde van de exergie benadering als aanvulling op de energie benadering bij de beoordeling van energiesystemen voor de gebouwde omgeving en bij de ontwikkeling van slimmere systemen met verminderde input van hoogwaardige energiebronnen?

De volgende subvragen zijn geformuleerd:

1) Welke thermodynamische concepten zijn relevant voor exergie analysein de gebouwde omgeving en hoe kunnen deze worden gecommuniceerd?

2) Welke belangrijke kennis ontbreekt bij de bestaande exergie analyse methoden voor de gebouwde omgeving en welke kennis kan binnen dit onderzoek worden aangevuld?

3) Wat is de exergie-prestatie van huidige energiesystemen voor de gebouwde omgeving en wat is de toegevoegde waarde van de exergie analyse van deze systemen?

4) Hoe kan de exergiebenadering bijdragen aan de ontwikkeling van slimmere energiesystemen voor de gebouwde omgeving met als doel de input van hoogwaardige energiebronnen te verminderen?

3.4 Aanpak

Het onderzoek is grotendeels een exploratief onderzoek met als doel de kennis over de toegevoegde waarde van de exergie benadering en de toepassingsmogelijkheden te vergroten. Bij het onderzoek is gebruik gemaakt van case studies om de verkenning te ondersteunen en deels te toetsen.
De volgende vier stappen binnen de aanpak kunnen worden onderscheiden, waartussen iteraties hebben plaatsgevonden tijdens het onderzoek:

1) De benodigde achtergrondtheorie en literatuur is bestudeerd;
2) De bestaande exergie analyse methoden voor de gebouwde omgeving – zoals beschikbaar in de wetenschappelijke literatuur – zijn bestudeerd. Ontbrekende kennis is onderzocht en de exergie analyse methode voor het verdere onderzoek is vastgesteld.
3) Voor een aantal case studies van huidige energiesystemen is de exergie-prestatie van het systeem als geheel en van de HVAC componenten afzonderlijk is geanalyseerd en de toegevoegde waarde van de exergie-analyse is verkend. De case studies zijn uitgevoerd met het dynamische simulatieprogramma TRNSYS.
4) De lessen uit stappen 1 t/m 3 zijn gebruikt om de verschillende mogelijkheden van de exergiebenadering voor het ontwikkelen van slimmere energiesystemen voor de gebouwde omgeving te onderzoeken. Een aantal aanbevelingen en mogelijke toepassingen is voorgesteld en getoetst met behulp van voorbeeld case studies.

3.5 Resultaten

De belangrijkste resultaten van het onderzoek zijn:

1) Aanvullingen op bestaande exergie berekeningsmethoden voor de gebouwde omgeving.

De belangrijkste aanvullingen betreffen een nieuwe, gedetailleerde berekening van de exergie behoefte voor verwarming en koeling (met name van belang voor het beoordelen van ventilatiesystemen), meer inzicht in de exergie van koelbehoeftes en de juiste aanpak voor het berekenen hiervan, en meer inzicht in de verschillen tussen statische berekening versus dynamische berekening.

2) Inzicht in de exergetische prestatie van huidige energieconcepten voor gebouwen en de toegevoegde waarde van de exergie analyse.

Aan de hand van case studies is inzicht in de exergetische prestatie van huidige energiesystemen voor de gebouwde omgeving verkregen. De case studies voor de Nederlandse situatie zijn gebaseerd op de Senternovem referentie tussenwoning. Naast een analyse van de minimale exergiebehoefte van de exergie prestatie van HR balansventilatiesystemen is een viertal energieconcepten geanalyseerd, gebaseerd op (1) een HR combiketel , (2) micro wkk (Hre ketel), (3) vloerverwarming en een combiwarmtepomp en (4) de woning met combiwarmtepomp volgens passiephuis standaard.

De analyse geeft Inzicht in de werkelijke (thermodynamische) prestatie van deze systemen, in grootste verliesposten en in de toegevoegde waarde van de exergie beoordeling

In onderstaande tabel zijn de energie en exergie-efficiënties van de onderzochte systemen gepresenteerd, zowel voor het gehele systeem als voor de afzonderlijke energiebehoeften (verwarming, tapwater en electriciteit. Koeling is vanwege de zeer lage behoeftes buiten beschouwing gelaten).

\[\text{Tabel 1: Jaarlijkse (gewogen gemiddelde) energie en exergie efficiënties van energiesystemen voor de senternovem referentie tussenwoning (} \eta = \text{ energie efficiëntie}; \psi = \text{ exergie efficiëntie).} \]
De analyse laat overduidelijk zien dat de exergie efficiënties voor ruimteverwarming erg laag zijn (tussen 5% en 14%) en een heel ander beeld geven dan de energie efficiëntie. Dit betekent dat het thermodynamisch verbeterpotentieel ook zeer groot is. Dit geeft meteen de grootste toegevoegde waarde aan de exergiebenadering, aangezien dit verbeterpotentieel niet uit de energieanalyse naar voren komt.

Een tweede toegevoegde waarde van de exergie-analyse is dat de exergieverliezen per component worden geïdentificeerd en gekwantificeerd. De belangrijkste exergieverliezen in de uitgevoerde case studies, die niet zichtbaar worden met een energie analyse, zijn de volgende:

- Exergieverliezen door de mismatch tussen de temperatuur van de warmtebehoefte (= binnentemperatuur) en van het emissiesysteem (bijvoorbeeld de radiator). Deze verliezen lopen op tot ruim 1.5 maal de exergiebehoefte voor verwarming.
- De jaarlijkse exergie prestatie van de HR balansventilatie unit is 21% terwijl de energie de 'COP' (de geleverde thermische output per eenheid elektrische input) 8.31 is.
- Zeer grote exergieverliezen vinden plaats in de boiler, terwijl de energie efficiëntie 90% is.
- Ook de micro wkk (HRe ketel) vertegenwoordigt grote exergieverliezen, terwijl de energie efficiëntie (thermisch + elektrisch samen) 100% is.
- Exergieverliezen zijn aanwezig in de warmtepompt, terwijl de COP 'negatieve energieverliezen' suggereert door het gebruik van gratis (omgevings) warmte.

Hoewel een aantal bevindingen al op kwalitatieve wijze bij veel bouwkundigen en ingenieurs bekend is - zoals de voordelen van lage temperatuur verwarming systemen - geeft de exergieanalyse ook de kwantificering van alle verliezen binnen het systeem naast elkaar, wat direct inzicht in de grootste verliespost geeft.

3) Verkenning van de toepassingsmogelijkheden van het exergieconcept voor deontwikkeling van slimmere energiesystemen voor de gebouwde omgeving.

De volgende mogelijke manieren om de exergiebenadering toe te passen zijn onderscheiden:

a. Het gebruik van exergieprincipes bij de ontwerpen van energiesystemen voor de gebouwde omgeving. Een lijst van in de gebouwde omgeving toepasbare principes is ontwikkeld en getoetst.

b. Het verbeteren van een gekozen systeem mbv exergie-verlies analyse. De quantificering van exergieverliezen in elke systeem-stap biedt een concreet hulpmiddel om een systeemconfiguratie of de regelingen te verbeteren.

c. Het ontwikkelen van innovaties door exergie inzicht. Voor innovaties kan geen stap voor stap procedure worden gegeven, maar de exergiebenadering schept wel nieuwe
inzichten die tot creatieve oplossingen kunnen leiden, waarvan een voorbeeld in het onderzoek is uitgewerkt.

Een aanpak bestaande uit drie stappen wordt voorgesteld:

1. Het ontwikkelen van energieconcepten op basis van de exergie principes (3a)
2. Het selecteren van de meest veelbelovende concepten op basis van exergie-analyse en andere randvoorwaarden zoals bijvoorbeeld kosten.
3. Het verbeteren van de geselecteerde systeemconfiguraties op basis van een analyse van exergieverliezen voor elke systeemcomponent. (4b)

3.6 Resultaten in het licht van LowEx

Dit onderzoek heeft bevestigd dat exergie-analyse ten opzichte van energie-analyse veel toegevoegd inzicht geeft in de werkelijke prestaties van energiesystemen voor de gebouwde omgeving, door deze te vergelijken met de theoretisch best haalbare prestatie. Met exergie-analyse wordt het thermodynamischeverbeterpotentieel gekwantificeerd voor het systeem als geheel en voor de systeemcomponenten afzonderlijk.

Daarnaast heeft het onderzoek laten zien hoe de exergie-aanpak kan bijdragen aan het ontwikkelen van energieconcepten die slim gebruik maken van de beschikbare (hoogwaardige) energiebronnen.

De resultaten vormen een aanvulling op bestaande kennis en exergie-berekeningsmethoden voor de gebouwde omgeving. Ten eerste is het nu beter mogelijk bestaande energiesystemen voor de gebouwde omgeving te analyseren op exergetische prestatie. Bovendien is hiermee een exergie-gebaseerde aanpak beschikbaar voor het ontwikkelen van nieuwe energiesystemen, met als doel het verminderen van de benodigde exergie-input.

3.7 Referenties

Proefschrift

Internationale publicaties

Overige

4 **Profit**

Bram Entrop: The role of energy techniques and measures in the development and utilisation of residential buildings

Het bijeenbrengen van de domeinen exergie, energie en financiën steunde voor het onderdeel profit gedeeltelijk op bestaande classificatie- en beoordelingstechnieken vanuit de investeringsleer en bedrijfseconomie. Op de Universiteit Twente is de aandacht uitgegaan naar het zichtbaar en monetair maken van de voor- en nadelen van de in Delft bestudeerde energiesystemen. De benadering stoelt op drie pijlers, te weten: de energieprestatie, de financiële prestatie en het implementatieproces.

4.1 **Probleemstelling**

De slaagkans van lage exergiesystemen in de markt wordt niet alleen bepaald door hun effecten op het energiegebruik en het door de toekomstige bewoners ervaren comfort, maar ook door financiële overwegingen. Het exergetisch afstemmen van gebouwen en hun bijbehorende energievoorziening op de menselijke behoefte dient vergezeld te worden van een financiële analyse die de kansen op praktische implementatie inzichtelijk maakt voor de betrokken partijen. De wisselwerking tussen het verduurzamen van de energie- en exergiehuishouding en het financiële rendement van residentieel vastgoed en bijbehorende energievoorziening was echter nog niet inzichtelijk gemaakt.

4.2 **Doelstelling**

Het doel van dit deelonderzoek was om de incentieven om energietechnieken en maatregelen te implementeren specifiek te maken, ten einde deze te kunnen monetariseren, zodat aanbevelingen aan bij bouwprojecten betrokken partijen kunnen worden gedaan om de kans op implementatie van energietechnieken en maatregelen te vergroten.
4.3 Onderzoeksvragen

De overkoepelende onderzoeksvraag van ‘Profit’ luidde:

Hoe kunnen de effecten en het implementatiepotentiaal van energietechnieken en -maatregelen worden bepaald?

Deze vraag is uitgesplitst in de volgende deelvragen:

1. Welke invloed hebben ETMs op de energieprestatie van woningen?
2. Welke financiële impact hebben ETMs in woningbouwprojecten?
3. Hoe worden in woningbouwprojecten beslissingen genomen met betrekking tot de implementatie van ETMs?
4. Hoe kan een nieuwe ETM worden geïmplementeerd in woningbouwprojecten?

4.4 Aanpak

Gezien het verplichte gebruik in Europa, de jarenlange toewijzing in het Nederlandse Bouwbesluit en de grote impact van energieprestatiemethoden op de basiskwaliteit van nieuwbouwwoningen, is ten eerste aangesloten bij drie in Nederland gebruikte energieprestatie beoordelingsmethoden. Deze zijn na een literatuurstudie van karakteristieken, die het energiegebruik van woningen beïnvloeden, geanalyseerd met behulp van een toepassing op een achttal woningen.

Na dit bouwfysische en wettelijke kader is de stap gemaakt naar investeringsmodellen, waarbij met name de rol van de Nederlandse energiefacturering zijn bestudeerd. De terugverdieneffecten van energietechnieken en -maatregelen worden vaak bepaald op basis van algemeen geldende gemiddelde energieprijzen. De situatie voor specifieke huishoudens kan echter sterk uiteenlopen en de complexiteit van Nederlandse energiefacturen is ongekend hoog. In deze studie zijn meer dan tachtig energiefacturen bestudeerd.

Vervolgens is aan de hand van twee nieuwbouwprojecten en twee renovatieprojecten bestudeerd welke rol energietechnieken en -maatregelen innemen in de beslissingen en besluiten door deelnemers in de bouwprojecten. Met deze aanpak kon worden bepaald, wie nu echt diegene zijn die kiezen en wie de informatie om deze keuze te maken aanleveren. Met deze informatie kan dan ook worden vastgesteld wie bij voorkeur (financieel) zou moeten worden geprikkeld ten einde de implementatie van energietechnieken en -maatregelen te doen stijgen.

4.5 Resultaten

Om ontwikkelaars en producenten van ETMs en de overheid met haar duurzame ambities een handreiking te doen, zijn op basis van dit promotie-onderzoek de volgende proposities opgesteld:

A. De kans op toepassing van een bepaalde ETM zal groter zijn, naar mate het werkelijk energiegebruik zoals ervaren door de gebruiker van de woning meer wordt gereduceerd;
B. De kans op toepassing van een bepaalde ETM zal groter zijn, naar mate de theoretische energieprestatieindicator (EPC, E_{old} en E_{nieuw}) zoals ervaren door de actoren meer wordt gereduceerd;
C. De kans op toepassing van een bepaalde ETM zal groter zijn, naar mate investeringskosten (\(CF_o = CF_{0.1;ontwerp} + CF_{0.2;product(en)} + CF_{0.3;installatie}\)) zoals ervaren door de opdrachtgever van het bouwproject lager zijn;

D. De kans op toepassing van een bepaalde ETM zal groter zijn, naar mate de financiële besparingen (\(CF_{a;ontwerp}\)) zoals ervaren door de gebruiker van de woning groter zijn;

E. De kans op toepassing van een bepaalde ETM zal groter zijn naar mate de betrouwbaarheid (\(CF_{a;onderhoud} + CF_{a;betrouwbaarheid}\)) zoals ervaren door de eigenaar van de woning groter is.

Er kan op basis van het gedane onderzoek echter geen rangvolgorde aan deze proposities worden toegekend. Er kon in dit onderzoek wel worden vastgesteld dat de inhoud van propositie A wezenlijk kan verschillen met de inhoud van B. Dit betekent dat ondanks dat een ETM invloed heeft op het werkelijke energiegebruik van een woning met haar gebruikers, dit niet tot uitdrukking hoeft te komen in de theoretische energieprestatie, of vice versa. Evenzo hoeft de inhoud van propositie A niet te stroken met de inhoud van D. De situatie bestaat dat de toepassing van een ETM die het werkelijke energiegebruik reduceert, niet leidt tot een financiële besparing. De energiekosten kunnen zelfs stijgen.

4.6 Resultaten in het licht van LowEx

De eerste wetenschappelijke bijdrage van dit proefschrift in het licht van LowEx is het raamwerk afgebeeld in het figuur op de volgende bladzijde. Dit raamwerk maakt het ontwikkelers en producenten van ETM’s mogelijk om het implementatie potentieel van een ETM vast te stellen op basis van (1) haar effect op het werkelijke energiegebruik en op de theoretische energieprestatie, (2) haar financiële impact qua investeringskosten en jaarlijkse financiële stromen en (3) haar verenigbaarheid met de doelen van de belanghebbenden. De proposities en het raamwerk kunnen sturing geven aan diegene die nieuwe ETMs ontwikkelen, bestaande ETMs verbeteren en ze aanbieden aan de partijen in woningbouwprojecten. Het raamwerk kan bovendien worden gebruikt om te verklaren waarom bepaalde ETMs wel of niet succesvol zijn.

De tweede wetenschappelijke bijdrage is het inzicht dat het bijna onmogelijk is voor een nieuwe ETM om te worden toegepast in woningbouwprojecten. Er zijn namelijk tenminste vijf barrières te onderscheiden, namelijk (1) de complexiteit van factoren die het energiegebruik van woningen en hun bewoners bepalen, (2) de verplichte certificering ten behoeve van het behalen van de benodigde theoretische energieprestatie, (3) de gescheiden incentieven van belanghebbenden, (4) de opbouw van de energiekosten, (5) de veranderlijkheid van de mechanismen, die ten grondslag liggen aan de voorgaande vier barrières.

Om de implementatie van ETMs te verbeteren zullen uiteraard inspanningen nodig zijn van alle betrokkenen in bouwprojecten, maar er zijn met name inspanningen nodig die de effecten van een ETM transparanter kunnen maken. Meer gegevens zijn nodig over de effecten van ETMs, wanneer deze worden toegepast in een woning met al haar kenmerken. Om dit mogelijk te maken in de bouwindustrie waar bijna elke woning het unieke resultaat is van een samenwerking van meerdere partijen met korte termijn belangen en waarbij de gebruiker vaak niet bekend is, wordt aanbevolen dat de overheid proefprojecten initieert en stimuleert. Deze projecten dienen uitgebreid te worden gemonitord met betrekking tot alle effecten van de toegepaste ETM qua werkelijk energiegebruik, theoretische energie-prestatie, financiële voor- en nadelen, en de toegepaste implementatiestrategie.
Implementatiepotentieel van een Energie Techniek of Maatregel (ETM)

1. Stel de energie prestatie vast
 1A. Stel de effecten van de ETM vast op het werkelijke energie-gebruik van woning en bewoners, rekeninghoudende met:
 - omgevingskenmerken;
 - bewonerskenmerken;
 - bouwkundige kenmerken;
 - installatie kenmerken;
 - apparatuurkenmerken.

 1B. Stel de effecten van de ETM vast op de theoretische energieprestatie indicator van de woning:
 - gebruik voor nieuwe woningen de EPC;
 - gebruik voor bestaande woningen de El_{nieuw};
 - gebruik bij voorkeur niet meer de El_{oud}.

2. Stel de financiële impact vast
 2A. Stel de investeringskosten van de ETM vast:
 - voor optimalisatie en aanpassing ontwerp $CF_{0.1; design}$
 - voor fysieke product(en) $CF_{0.2; product(s)}$
 - voor transport en installatie $CF_{0.3; installation}$

 2B. Stel de jaarlijkse opbrengsten en kosten van de ETM vast:
 - qua energiekosten $CF^{+/ -}_{0.4; energy}$
 - qua onderhoud $CF^{+/ -}_{0.5; maintenance}$
 - qua betrouwbaarheid $CF^{+/ -}_{0.6; reliability}$
 - qua gebruikerscomfort $CF^{+/ -}_{0.7; user comfort}$
 - qua terugslag effect $CF^{+/ -}_{0.8; rebound effect}$
 - qua waarde woning $CF^{+}_{0.9; value dwelling}$

3. Stel de belangen van de belanghebbenden vast
 Stel de belangen van de belanghebbenden vast om een strategie te ontwikkelen binnen de institutionele context, neem mee de:
 - Ontwerpimplementatie architecten, adviseurs en opdrachtgevers met focus op projectspecifieke voor- en nadelen;
 - Fysieke implementatie door aannemers en opdrachtgevers door toepassing van ETM in nieuw- en bestaande bouw;
 - Marketing implementatie door opdrachtgevers en eigenaren rekeninghoudende met verkooppunten ETM binnen project;
 - Gebruiksimplementatie door eigenaren en bewoners betreffende gebruik en onderhoud van de ETM in de woning.

Figuur X-X: Raamwerk voor ontwikkelaars en producenten van EnergieTechnieken en -Maatregelen (ETMs) om het implementatiepotentieel van een ETM in woningbouwprojecten vast te stellen
4.7 Referenties

Proefschrift

Bram Entrop: Assessing energy techniques and measures in residential buildings; a multidisciplinary perspective.

Internationale publicaties

Bijdragen aan journals:

Boek bijdrage:
5 Lessen uit LowEx

In LowEx wordt de gebouwde omgeving beschouwd als een samenhangende keten van mens, gebouw, wijk en bijbehorende energievoorziening. Dit geheel werd in dit onderzoek integraal benaderd, zowel thermodynamisch (middels exergieanalyses) als economisch (middels financiële analyses). De thermodynamische benadering van exergie leidt tot nieuwe beoordelingscriteria cq. ontwerpparadigma’s ten aanzien van o.a. de afstemming tussen vraag naar en aanbod van energie, en de noodzaak voor technologische verbetering cq doorbraak (zie onderzoeksvragen en aanpak hieronder). Een integrale toepassing van deze beoordelingscriteria en ontwerpparadigma’s kan leiden tot een aanzienlijk efficiëntere inzet van zowel fossiele als vernieuwbare energiebronnen voor gebouwgebonden functies (verwarmen, ventileren en koelen).

Het EOS-LT-programma was expliciet bedoeld als langetermijn-programma, met het doel onderzoek te stimuleren dat de oplossingen verkent voor de wereld van overmorgen. De eerste vragen bij LowEx waren dan ook heel open: kan de exergetische systeembenadering, bekend uit de procesindustrie, ook worden toegepast in de gebouwde omgeving? Heeft het een meerwaarde en hoe gaat het in zijn werk? Daarnaast beoogde LowEx de markttechnische randvoorwaarden en gebruikersaspecten te verkennen. Het was verre van zeker dat hier positieve en bruikbare resultaten uit zouden voortkomen.

De resultaten zijn veelbelovend. Het blijkt inderdaad mogelijk om energiesystemen in de gebouwde omgeving exergetisch te beoordelen en te optimaliseren volgens de exergetische systeembenadering. En in elk geval in theorie kan dit leiden tot een doeltreffender gebruik van energie. Ook is door LowEx het inzicht vergroot in binnenklimaataspecten die bij LowEx-klimaatconcepten een (grotere) rol spelen, met name geleidelijk veranderende temperaturen en niet-uniforme omgevingstemperaturen. Hierdoor is het beter mogelijk om comfortabele klimaatconcepten te ontwerpen. Ook het onderzoek naar marktaspecten van LowEx-systemen heeft positieve resultaten opgeleverd.

Hoewel EOS-LT primair een langetermijn-doelstelling had, heeft LowEx ook resultaten opgeleverd die meteen bruikbaar zijn in de gebouwde omgeving. Een paar voorbeelden:

- De exergie-analysemethoden van Sabine Jansen (TU Delft, Planet) kunnen nu al gebruikt worden om bijvoorbeeld een systeem van stadsverwarming met restwarmte uit de industrie te optimaliseren.
- De bevindingen van Lisje Schellen (TU Eindhoven, People) over thermisch comfort kunnen al meteen door adviseurs en ontwerpers worden gebruikt om comfortabeler klimaatconcepten met vloer- of wandverwarming, of grote glasvlakken, te ontwerpen. Bovendien zijn met deze inzichten binnenklimaatproblemen in bestaande situaties beter te begrijpen en op te lossen, zodat de gebruiksqualiteit toeneemt. Ook is het met deze inzichten beter mogelijk ‘free running buildings’ te ontwerpen met een goed binnenklimaat, waardoor de noodzaak van nauwkeurig geklimatiseerde gebouwen (en het energiegebruik van dien) afneemt.
- De bevindingen van Bram Entrop (Universiteit Twente, Profit) bieden ontwikkelaars van LowEx technieken houvast om te diagnosticeren of hun techniek geschikt is voor de Nederlandse markt, danwel kan worden verbeterd om het implementatiepotentieel te vergroten.
Op langere termijn is nog meer spin-off van LowEx te verwachten. Dit komt deels omdat het in praktijk tijd kost voor de markt, de bouwpraktijk en de beleidsvorming toe is aan het werkelijk implementeren van nieuwe technologie.

Bovendien is voor sommige aspecten van LowEx meer onderzoek nodig om de principes in praktijk optimaal toe te kunnen passen.

- De resultaten van het onderzoek m.b.t. tot de toegevoegde waarde van het gebruiken van het exergieconcept bij het beoordelen en ontwikkelen van energie systemen kunnen als veelbelovend worden beschouwd, maar het karakter van het onderzoek tot nu toe is nog verkennend en theoretisch en met name gericht op thermodynamische prestatie. Het zou bijvoorbeeld goed zijn in een vervolgonderzoek te kijken in hoeverre de theoretische verbeteringen ook in de praktijk haalbaar zijn, welke obstakels (technische en organisatorisch) er zijn en of en hoe energie adviseurs met het concept wensen te werken.

- Met betrekking tot gebruikersaspecten wordt nader onderzoek voorgesteld naar de relatie tussen gebruikersgedrag en energiegebruik. Het is gebleken dat meer gebruikersinvloed op het binnenklimaat kan leiden tot meer thermisch comfort, maar hoe verhoudt zich dit tot energiegebruik? Bovendien wordt voorgesteld nader te onderzoeken hoe het thermisch comfort van afzonderlijke lichaamsdelen van invloed is op het thermisch comfort van het hele lichaam. Ten slotte wordt voorgesteld de verschillen in thermische beleving tussen mannen en vrouwen of ander sub-populaties verder te onderzoeken.

- Met betrekking tot marktaspecten wordt nader onderzoek voorgesteld naar het initiëren en monitoren van pilot-projecten waarin concrete data wordt verzameld over meer karakteristieken die het energiegebruik van huishoudens bepalen dan in de Nederlandse energieprestatie-indicatoren het geval is. Op deze wijze wordt beter inzichtelijk wat het effect van LowEx-technieken onder welke gebruiksomstandigheden precies kan zijn.